[1]龚 元,张银龙.基于物候模型的气温对温带落叶阔叶林生态系统物候过程的影响[J].福建农林大学学报(自然科学版),2020,49(05):621-630.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.05.008]
 GONG Yuan,ZHANG Yinlong.Impact of air temperature on the phenological process of a temperate deciduous broad-leaved forest ecosystem based on phenology model[J].,2020,49(05):621-630.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.05.008]





Impact of air temperature on the phenological process of a temperate deciduous broad-leaved forest ecosystem based on phenology model
龚 元123 张银龙12
1.南京林业大学生物与环境学院,江苏 南京 210037; 2.南京林业大学江苏省南方现代林业协同创新中心,江苏 南京 210037; 3.阿拉巴马大学生物科学系,塔斯卡卢萨 AL35487
GONG Yuan123 ZHANG Yinlong12
1.College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; 2.Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province,Nanjing Forestry University, Nanjing, Jiangsu 210037,China; 3.Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
中纬度 森林生态系统 涡动协方差技术 CO2通量 物候模型
mid-latitude forest ecosystem eddy covariance CO2 flux phenology model
基于国际通量网(FLUXNET)注册站点美国摩根门罗州国有森林(US-MMS)通量观测塔记录的2000—2014年生态系统总初级生产力数据和气温数据,结合物候模型探讨该温带森林生态系统的物候特征以及气温对生态系统物候过程的影响.结果表明:2000—2014年US-MMS温带森林生态系统生长季开始于第105 天,第306天结束,生态系统生长季长度约201 d; US-MMS温带森林生态系统的生长季长度主要由生长季结束日和生长季衰落期控制(P<0.01),而生长季开始日对生态系统生长季长度的影响相对较小(P<0.05); 随着生长季结束日的延迟和生长季衰落期的延长,生态系统生长季长度延长; 增温导致生态系统生长季开始日提前,但气温对生态系统生长季结束日的影响较小.
Based on data of gross primary productivity(GPP)and air temperature from 2000 to 2014, which were recorded at a registered FLUXNET station at morgan-monroe state forest, USA(US-MMS), the phenological characteristics of the temperate forest ecosystem and the effect of air temperature on the phenological process of the ecosystem were analyzed via phenology model. The results showed that from 2000 to 2014 growing season started on the 105th day and ended at the 306th day, totaling 201 days. The length of growing season in US-MMS temperate forest was a function of the end of growing season and the senescence phase of growing season(P<0.01), which was relatively less affected by the start of growing season compared with the former 2 factors(P<0.05). If the end of growing season delayed or the length of senescence phase prolonged, the length of the growing season for the ecosystem was in a tendency to prolong. Warming effects triggered the start of growing season in advance but exerted minor effect on the end of growing season. The study is attributed to the knowledge of carbon cycle in terrestrial ecosystem.


[1] 高贵宾,钟浩,吴志庄,等.不同混生地被竹光合和荧光特征比较[J].福建农林大学学报(自然科学版),2016,45(5):515-521.
[2] 马锦丽,江洪,舒海燕,等.天目山自然保护区典型阔叶林的光合特性[J].福建农林大学学报(自然科学版),2016,45(4):381-390.
[3] STARR G, STAUDHAMMER C L, LOESCHER H W, et al. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire[J]. New Forests, 2015,46(1):63-90.
[4] 龚元,郭智娟,张凯迪,等.植被对亚热带城市生态系统CO2通量的影响[J].生态学报,2019,39(2):530-541.
[5] 陈家新,杨红强.全球森林及林产品碳科学研究进展与前瞻[J].南京林业大学学报(自然科学版),2018,42(4):1-8.
[6] ELMORE A J, NELSON D M, CRAINE J M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests[J]. Nature Plants, 2016,2(10):16133-16134.
[7] 张悦,冯会丽,王维枫,等.洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征[J].南京林业大学学报(自然科学版),2019,43(5):113-120.
[8] 龚元,张银龙.气温变化对温带混交林生态系统CO2通量的影响[J].东北林业大学学报,2020,48(5):40-44,87.
[9] 龚元,纪小芳,花雨婷,等.基于涡动相关技术的森林生态系统二氧化碳通量研究进展[J].浙江农林大学学报,2020,37(3):593-604.
[10] 吴国训,唐学君,阮宏华,等.基于森林资源清查的江西省森林碳储量及固碳潜力研究[J].南京林业大学学报(自然科学版),2019,43(1):105-110.
[11] NORBY R J, HARTZ-RUBIN J S, VERBRUGGE M J. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment[J]. Global Change Biology, 2003,9(12):1792-1801.
[12] KEENAN T F, GRAY J, FRIEDL M A, et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology[J]. Nature Climate Change, 2014,4(7):598-599.
[13] BÖTTCHER K, AURELA M, KERVINEN M, et al. MODIS time-series-derived indicators for the beginning of the growing season in boreal coniferous forest——a comparison with CO2 flux measurements and phenological observations in Finland[J]. Remote Sensing of Environment, 2014,140:625-638.
[14] RICHARDSON A D, ANDY BLACK T, CIAIS P, et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010,365(1555):3227-3246.
[15] NIU S, FU Y, GU L, et al. Temperature Sensitivity of Canopy Photosynthesis Phenology in Northern Ecosystems[M].Dordrecht: Springer, 2013:503-519.
[16] GONSAMO A, CHEN J M, PRICE D T, et al. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique[J]. Journal of Geophysical Research: Biogeosciences, 2012,117:G03032.
[17] GU L, POST W M, BALDOCCHI D D, et al. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis across a Range of Vegetation Types[M]. New York: Springer, 2009:35-58.
[18] 方成圆,江洪,牛晓栋,等.天目山常绿、落叶阔叶混交林生长季能量通量及平衡分析[J].福建农林大学学报(自然科学版),2016,45(4):391-397.
[19] NICOLINI G, AUBINET M, FEIGENWINTER C, et al. Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance[J]. Agricultural and Forest Meteorology, 2018,248:228-239.
[20] HAYEK M N, WEHR R, LONGO M, et al. A novel correction for biases in forest eddy covariance carbon balance[J]. Agricultural and Forest Meteorology, 2018,250:90-101.
[21] KNAUER J, ZAEHLE S, MEDLYN B E, et al. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data[J]. Global Change Biology, 2018,24(2):694-710.
[22] REBMANN C, AUBINET M, SCHMID H P, et al. ICOS eddy covariance flux-station site setup: a review[J]. International Agrophysics, 2018,32(4):471-494.
[23] 温小洁,姚顺波.黄河中上游植被覆盖与人类活动强度的时空动态演化[J].福建农林大学学报(自然科学版),2018,47(5):607-614.
[24] TURNER D P, RITTS W D, COHEN W B, et al. Scaling gross primary production(GPP)over boreal and deciduous forest landscapes in support of MODIS GPP product validation[J]. Remote Sensing of Environment, 2003,88(3):256-270.
[25] LIPOVETSKY S. Double logistic curve in regression modeling[J]. Journal of Applied Statistics, 2010,37(11):1785-1793.
[26] CHEN Y, SHEN W, GAO S, et al. Estimating deciduous broadleaf forest gross primary productivity by remote sensing data using a random forest regression model[J]. Journal of Applied Remote Sensing, 2019,13(3):038502.
[27] MELESSE A M, HANLEY R S. Artificial neural network application for multi-ecosystem carbon flux simulation[J]. Ecological Modelling, 2005,189(3/4):305-314.
[28] SCHMID H P, GRIMMOND C S B, CROPLEY F, et al. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States[J]. Agricultural and Forest Meteorology, 2000,103(4):357-374.
[29] NOORMETS A, CHEN J, GU L, et al. The Phenology of Gross Ecosystem Productivity and Ecosystem Respiration in Temperate Hardwood and Conifer Chronosequences[M]. New York: Springer, 2009:59-85.
[30] CHURKINA G, SCHIMEL D, BRASWELL B H, et al. Spatial analysis of growing season length control over net ecosystem exchange[J]. Global Change Biology, 2005,11(10):1777-1787.
[31] WU C, GONSAMO A, GOUGH C M, et al. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS[J]. Remote Sensing of Environment, 2014,147:79-88.
[32] 刘啸添,周蕾,石浩,等.基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J].生态学报,2018,38(10):3482-3494.
[33] ZHU W, TIAN H, XU X, et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982—2006[J]. Global Ecology and Biogeography, 2012,21(2):260-271.
[34] FISHER J I, RICHARDSON A D, MUSTARD J F. Phenology model from surface meteorology does not capture satellite-based greenup estimations[J]. Global Change Biology, 2007,13(3):707-721.
[35] CHMIELEWSKI F M, RÖTZER T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes[J]. Climate Research, 2002,19(3):257-264.


收稿日期:2019-11-14 修回日期: 2020-02-11
基金项目:国家重点研发计划项目(2016YFC0502704); 江苏高校优势学科建设工程资助项目(PAPD).
更新日期/Last Update: 2020-09-20