[1]王涛涛,杨 勇,魏 唯,等.互花米草SaNAC36转录因子克隆及表达分析[J].福建农林大学学报(自然科学版),2020,49(05):695-702.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.05.018]
 WANG Taotao,YANG Yong,WEI Wei,et al.Cloning and expression analysis of SaNAC36 transcription factor in Spartina alterniflora[J].,2020,49(05):695-702.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.05.018]
点击复制

互花米草SaNAC36转录因子克隆及表达分析()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
49卷
期数:
2020年05期
页码:
695-702
栏目:
资源与环境
出版日期:
2020-09-18

文章信息/Info

Title:
Cloning and expression analysis of SaNAC36 transcription factor in Spartina alterniflora
文章编号:
1671-5470(2020)05-0695-08
作者:
王涛涛12 杨 勇12 魏 唯3 曾维科3 郭亚楠3 林辰涛2 马留银2
1.福建农林大学林学院; 2.基础林学与蛋白质组学研究中心; 3.生命科学学院,福建 福州 350002
Author(s):
WANG Taotao12 YANG Yong12 WEI Wei3 ZENG Weike3 GUO Yanan3 LIN Chentao2 MA Liuyin3
1.College of Forestry; 2.Basic Forestry and Proteomics Research Center; 3.College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
关键词:
互花米草 NAC36 克隆 基因表达 转基因
Keywords:
Spartina alterniflora NAC36 cloning gene expression transgenic
分类号:
S718.43
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2020.05.018
文献标志码:
A
摘要:
以互花米草(Spartina Alterniflora)为材料,利用三代全长转录组测序数据以及生物信息学手段获取SaNAC36的转录本序列.序列分析显示,SaNAC36基因全长CDS为942 bp,编码313个氨基酸.序列比对结果表明,SaNAC36蛋白具有保守的结构域且与水稻(Oryza sativa)、高粱(Sorghum bicolor)以及玉米(Zea mays)等植物具有高度同源性.qRT-PCR结果显示,SaNAC36基因具有显著的组织表达差异性,在互花米草叶片中表达量最高,且在盐、ABA以及干旱处理下表达量均呈下降趋势.亚细胞定位和自激活试验证明,SaNAC36蛋白在细胞核内表达且具有转录激活活性.同时在拟南芥(Arabidopsis thaliana)中过表达SaNAC36产生植株生长矮小的表型,进一步表明SaNAC36蛋白是互花米草生长发育及非生物胁迫应答调控的重要转录因子.
Abstract:
In order to explore the function of NAC36 transcription factor in Spartina alterniflora, the sequence of SaNAC36 transcript was first obtained by the third generation of full-length transcriptome sequencing data of S.alterniflora and then analyzed via bioinformatics methods. Sequence analysis indicated the CDS length of SaNAC36 gene was 942 bp, which encoded 313 amino acids. Sequence alignment results showed that SaNAC36 protein had conserved domains and high homology with proteins in Oryza sativa, Sorghum bicolor and Zea mays. The results of qRT-PCR showed that the expressions of SaNAC36 gene varied significantly among different tissues, with the maximum expression level occurring in the leaves of S.alterniflora, and also presented down-regulated trend under salt, ABA and drought stress. Subcellular localization and self-activation experiments showed that SaNAC36 protein expressed in the nucleus and had transcriptional activation activity. At the same time, it was confirmed that the overexpression of the SaNAC36 gene in Arabidopsis thaliana produced dwarf related phenotypes, further suggesting that SaNAC36 protein as an important transcriptional factor invovled in the regulation of growth and development and abiotic stress response in S.alterniflora.

参考文献/References:

[1] BEDRE R, MANGU V R, SRIVASTAVA S, et al. Transcriptome analysis of smooth cordgrass(Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity[J/OL]. Bmc Genomics,(2015-11-23)[2016-08-19].https://doi.org/10.1186/s12864-016-3017-3.
[2] SENGUPTA S, MANGU V, SANCHEZ L, et al. An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora(SaADF2), is superior to its rice homolog(OsADF2)in conferring drought and salt tolerance when constitutively overexpressed in rice[J]. Plant Biotechnol Journal, 2019,17(1):188-205.
[3] BAISAKH N, RAMANARAO M V, RAJASEKARAN K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora Loisel[J]. Plant Biotechnol Journal, 2012,10(4):453-464.
[4] SABLOWSKI R W M, MEYEROWITZ E M. A Homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA[J]. Cell, 1998,92(1):93-103.
[5] 张慧珍,白雪芹,曾幼玲.植物NAC转录因子的生物学功能[J].植物生理学报,2019,55(7):915-924.
[6] SHAO H, WANG H, TANG X. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects[J]. Front Plant Sci, 2015,6.doi: 10.3389/fpls.2015.00902.
[7] BALAZADEH S, SIDDIQUI H, ALLU A D, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J]. The Plant Journal, 2010,62(2):250-264.
[8] GUAN Q, YUE X, ZENG H, et al. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis[J]. Plant Cell, 2014,26(1):438-453.
[9] TRAN L S, NAKASHIMA K, SAKUMA Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004,16(9):2481-2498.
[10] HUANG L, HONG Y, ZHANG H, et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J/OL]. BMC Plant Biology,(2016-03-31)[2016-09-20].https://doi.org/10.1186/s12870-016-0897-y.
[11] YUAN X, WANG H, CAI J, et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response[J/OL]. BMC Plant Biology,(2018-11-19)[2019-06-25].https://doi.org/10.1186/s12870-019-1883-y.
[12] OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003,10(6):239-247.
[13] KATO H, MOTOMURA T, KOMEDA Y, et al. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana[J]. Journal of Plant Physiol, 2010,167(7):571-577.
[14] 祝巧鸣,娄帅通,杨勇,等.毛竹茎秆快速生长相关基因PeHSD1的功能探究[J].分子植物育种,2018,19:6269-6275.
[15] YE W, WANG T, WEI W, et al. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte[J]. Plant Cell Physiol, 2020,61(5):882-896.
[16] 巩檑,陈虞超,甘晓燕,等.梭梭NAC家族基因转录组鉴定及干旱和盐胁迫下的表达分析[J].分子植物育种,2017,15(10):3920-3931.
[17] KE Q, KIM H S, WANG Z, et al. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar[J]. Plant Biotechnol Journal, 2017,15(3):331-343.
[18] RODRÍGUEZ A, SHIMADA T, CERVERA M, et al. Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens[J]. Plant Physiol, 2014,164(1):321-339.

备注/Memo

备注/Memo:
收稿日期:2019-08-26 修回日期:2019-12-28
基金项目:福建农林大学林学高峰学科建设项目(71201800725、71201800773); 福建农林大学优秀博士学位论文资助基金(324-1122yb043); 福建农林大学科技创新专项基金项目(CXZX2019142G).
作者简介:王涛涛(1990-),男,博士研究生.研究方向:林木遗传学理论基础.Email:fjnlwtt@163.com.通信作者马留银(1984-),男,副教授.研究方向:转录后调控在植物生长发育调控中的分子机制.Email:lma223@fafu.edu.cn.
更新日期/Last Update: 2020-09-20