[1]李梦莹,王成尘,毕 珏,等.食品中重金属的人体健康风险评估方法研究进展[J].福建农林大学学报(自然科学版),2021,50(01):1-9.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.001]
 LI Mengying,WANG Chengchen,BI Jue,et al.Human health risk assessment of heavy metals in food: a review[J].,2021,50(01):1-9.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.001]
点击复制

食品中重金属的人体健康风险评估方法研究进展()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年01期
页码:
1-9
栏目:
综述
出版日期:
2021-01-18

文章信息/Info

Title:
Human health risk assessment of heavy metals in food: a review
文章编号:
1671-5470(2021)01-0001-09
作者:
李梦莹 王成尘 毕 珏 覃一书 王 坤 向 萍
西南林业大学生态与环境学院,云南 昆明 650224
Author(s):
LI Mengying WANG Chengchen BI Jue QIN Yishu WANG Kun XIANG Ping
School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China
关键词:
食品 重金属 人体健康风险评估
Keywords:
food heavy metals human health risk assessment
分类号:
R155.5
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.01.001
文献标志码:
A
摘要:
食品安全是一个关乎全球可持续发展的重要问题.近几十年来,环境中的重金属对食品质量的不良影响已经威胁到人类,运用模型评估食品中的重金属对人体健康的危害程度是必然趋势.目前研究人员常用的方法主要是评价公式、体外消化系统模拟实验、动物模型实验和肠道细胞模型实验,本文总结了4种常用方法的优势和局限性并进行了讨论.在未来,体外和体内方法相辅相成能更准确地评估食品中的重金属对人体健康的危害.
Abstract:
Food safety is an important issue related to global sustainable development. In recent decades, the adverse effects of heavy metals from the environment on food quality have threatened human beings. It is an inevitable trend to use models to evaluate the harmfulness of food-derived heavy metals to human health. The commonly used assessment methods are summarized in this review, which include evaluation formulas, in vitro digestive system simulation test, animal model and intestinal cell model. The advantages and disadvantages of the 4 methods were summarized and discussed. The review proposes that the combination of in vitro and in vivo methods can more accurately evaluate the harmfulness of heavy metals in food upon human health.

参考文献/References:

[1] RAI P K, KUMAR V, LEE S, et al. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture[J]. Environment International, 2018,119:1-19.
[2] TOTH G, HERMANN T, DA SILVA M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016,88:299-309.
[3] KHALID S, SHALID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017,182:247-268.
[4] GALL J E, BOYD R S, RAJAKARUNA N. Transfer of heavy metals through terrestrial food webs: a review[J]. Environmental Monitoring and Assessment, 2015,187(4):1-21.
[5] WANG M, CHEN W, PENG C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China[J]. Chemosphere, 2016,144:346-351.
[6] OMAR N A, PRAVEENA S M, ARIS A Z, et al. Health risk assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study[J]. Food Chemistry, 2015,188:46-50.
[7] 付瑾,崔岩山.食物中营养物及污染物的生物可给性研究进展[J].生态毒理学报,2011,6(2):113-120.
[8] RUBY M V, SCHOOF R, BRATTIN W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999,33:3697-3705.
[9] AZIZ R, RAFIQ M T, LI T, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines(Caco-2/HL-7702)[J]. Journal of Agricultural and Food Chemistry, 2015,63(13):3599-3608.
[10] QIN G, NIU Z, YU J, et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology[J]. Chemosphere, 2021,267:129205.
[11] KOPITTKE P M, MENZIES N W, WANG P, et al. Soil and the intensification of agriculture for global food security[J]. Environment International, 2019,132:105078.
[12] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019,125:365-385.
[13] LI H, LI M, ZHAO D, et al. Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications[J]. Journal of Hazardous Materials, 2018,358:427-433.
[14] PAN X D, WU P G, JIANG X G. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China[J]. Scientific Reports, 2016,6(1):20317.
[15] NASERI M, VAZIRZADEH A, KAZEMI R, et al. Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment[J]. Food Chemistry, 2015,175:243-248.
[16] HUANG Z, PAN X, WU P, et al. Heavy metals in vegetables and the health risk to population in Zhejiang, China[J]. Food Control, 2014,36(1):248-252.
[17] PAUSTENBACH D J. Human and ecological risk assessment[M]. New York: Wiley, 2015.
[18] OKATI N, ESMAILI-SARI A. Determination of mercury daily intake and hair-to-blood mercury concentration ratio in people resident of the coast of the persian gulf, Iran[J]. Archives of Environmental Contamination and Toxicology, 2018,74(1):140-153.
[19] LEI B, CHEN L, HAO Y, et al. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility[J]. Ecotoxicology and Environmental Safety, 2013,96:160-167.
[20] GOPE M, MASTO R, GEORGE J, et al. Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons(PAHs)in the street dust of Asansol city, India[J]. Sustainable Cities and Society, 2018,38:616-626.
[21] 张文新,陈勇,齐誉,等.新疆玛河流域土壤和蔬菜汞分布特征与生态、人体健康风险评价[J].环境化学,2017,36(11):2441-2450.
[22] CAO L, LIU J H, DOU S Z, et al. Biomagnification of methylmercury in a marine food web in Laizhou Bay(North China)and associated potential risks to public health[J]. Marine Pollution Bulletin, 2020,150:110762.
[23] RÉMOND D, SHAHAR D R, GILLE D, et al. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition[J]. Oncotarget, 2015,6(16):13858.
[24] CALVO-LERMA J, FORNÉS-FERRER V, HEREDIA A, et al. In vitro digestion models to assess lipolysis: The impact of the simulated conditions of gastric and intestinal pH, bile salts and digestive fluids[J]. Food Research International, 2019,125:108511.
[25] MCDONALD S W, MACFARLANE N G. The mouth, stomach and intestines[J]. Anaesthesia & Intensive Care Medicine, 2018,19(3):128-132.
[26] MIAO M, JIANG B, CUI S W, et al. Slowly digestible starch—a review[J]. Critical Reviews in Food Ence & Nutrition, 2015,55(12):1642-1657.
[27] LI C, YUW, WU P, et al. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract[J]. Trends in Food Science & Technology, 2020,96:114-126.
[28] DI STASIO L, TRANQUET O, PICARIELLO G, et al. Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion[J]. Food Research International, 2020,127:108758.
[29] BRODKORB A, EGGER L, ALMINGER M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion[J]. Nature Protocols, 2019,14(14):991-1014.
[30] MARCANO J, HERNANDO I, FISZMAN S. In vitro measurements of intragastric rheological properties and their relationships with the potential satiating capacity of cheese pies with konjac glucomannan[J]. Food Hydrocolloids, 2015,51:16-22.
[31] ALMAAS H, CASES A, DEVOLD T G, et al. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes[J]. International Dairy Journal, 2006,16(9):961-968.
[32] LLORENTE-MIRANDES T, LLORENS-MUNOZ M, FUNES-COLLADO V, et al. Assessment of arsenic bioaccessibility in raw and cooked edible mushrooms by a PBET method[J]. Food Chemistry, 2016,194:849-856.
[33] CHIOCCHETTI G M, LATORRE T, CLEMENTE M J, et al. Toxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety[J]. Food Chemistry, 2020,306:125478.
[34] SHANI-LEVI C, ALVITO P, ANDRES A, et al. Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information[J]. Trends in Food Science & Technology, 2017,60:52-63.
[35] NG J C, JUHASZ A, SMITH E, et al. Assessing the bioavailability and bioaccessibility of metals and metalloids[J]. Environmental Science & Pollution Research, 2015,22(12):8802-8825.
[36] POSSEMIERS S, VERTHÉ K, UYTTENDAELE S, et al. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem[J]. FEMS Microbiology Ecology, 2004,49(3):495-507.
[37] WANG J, WU P, LIU M, et al. An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J]. Food & Function, 2019,10(5):2914-2925.
[38] BARROS L, RETAMAL C, TORRES H, et al. Development of an in vitro mechanical gastric system(IMGS)with realistic peristalsis to assess lipid digestibility[J]. Food Research International, 2016,90:216-225.
[39] ZHANG X, LIAO Z, WU P, et al. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an in vitro dynamic rat stomach made with a 3D printed model[J]. Food Research International, 2018,106:495-502.
[40] 徐笠,陆安祥,王纪华,等.食物中重金属的生物可给性和生物有效性的研究方法和应用进展[J].生态毒理学报,2017,12(1):89-97.
[41] ROBINSON N B, KRIEGER K, KHAN F M, et al. The current state of animal models in research: A review[J]. International Journal of Surgery, 2019,72:9-13.
[42] ZHAO D, JUHASZ A, LUO J, et al. Mineral dietary supplement to decrease cadmium relative bioavailability in rice based on a mouse bioassay[J]. Environmental Science & Technology, 2017,51:12123-12130.
[43] JUHASZ A, WEBER J, SMITH E. Predicting arsenic relative bioavailability in contaminated soils using meta analysis and relative bioavailability-bioaccessibility regression models[J]. Environmental Science & Technology, 2011,45:10676-10683.
[44] LI H, LI J, JUHASZ A, et al. Correlation of in vivo relative bioavailability to in vitro bioaccessibility for arsenic in household dust from China and its implication for human exposure assessment[J]. Environmental Science & Technology, 2014,48:13652-13659.
[45] ZHUANG P, SUN S, ZHOU X, et al. Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays[J]. Science of the Total Environment, 2020,719:137453.
[46] LI W, WANG W. In vivo oral bioavailability of fish mercury and comparison with in vitro bioaccessibility[J]. Science of the Total Environment, 2019,683:648-658.
[47] LI H, LI M, ZHAO D, et al. Oral bioavailability of As, Pb and Cd in contaminated soils, dust and foods based on animal bioassays: a review[J]. Environmental Science & Technology, 2019,53:10545-10559.
[48] ROBINSON N B, KRIEGER K, KHAN F M, et al. The current state of animal models in research: A review[J]. International Journal of Surgery, 2019,72:9-13.
[49] KIM T W, CHE J H, YUN J W. Use of stem cells as alternative methods to animal experimentation in predictive toxicology[J]. Regulatory Toxicology and Pharmacology, 2019,105:15-29.
[50] KVIETYS P R, GRANGER D N. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport[J]. Annals of the New York Academy of Sciences, 2010,1207(S1):E29-E43.
[51] CENCIC A, LANGERHOLC T. Functional cell models of the gut and their applications in food microbiology—a review[J]. International Journal of Food Microbiology, 2010,141:S4-S14.
[52] RUBAS W, JEZYK N, GRASS G. Comparison of the permeability characteristics of a human colonic epithelial(Caco-2)cell line to colon of rabbit, monkey and dog intestine and humandrug absorption[J]. Pharmaceutical Research, 1993,10:113-118.
[53] MAO X O, QIU X Y, JIAO C H, et al. Candida albicans SC5314 inhibits NLRP3/NLRP6 inflammasome expression and dampens human intestinal barrier activity in Caco-2 cell monolayer model[J]. Cytokine, 2020,126:154882.
[54] SOHAL I S, DELOID G M, O'FALLON K S, et al. Effects of ingested food-grade titanium dioxide, silicon dioxide, iron(Ⅲ)oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model[J]. NanoImpact, 2020,17:100209.
[55] GAO S, YIN T, XU B, et al. Amino acid facilitates absorption of copper in the Caco-2 cell culture model[J]. Life Sciences, 2014,109(1):50-56.
[56] VÁZQUEZ M, VÉLEZ D, DEVESA V. In vitro characterization of the intestinal absorption of methylmercury using a Caco-2 cell model[J]. Chemical Research in Toxicology, 2014,27(2):254-264.
[57] FU J, CUI Y S. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessibility/bioavailability in two vegetables: The influence of cooking and additives[J]. Food and Chemical Toxicology, 2013,59:215-221.
[58] 方勇,夏季,李红梅,等.基于体外模拟消化/Caco-2细胞模型测定大米中铅的生物有效性[J].食品科学,2016,37(16):199-204.
[59] BERI W T, GESESSEW W S, TIAN S. Maize cultivars relieve health risks of Cd-polluted soils: in vitro Cd bioaccessibility and bioavailability[J]. Science of the Total Environment, 2020,703:134852.
[60] LEI J, ZHANG Y, CHEN X G, et al. Assessment of iron bioavailability in ten kinds of Chinese wheat flours using an in vitro digestion/Caco-2 cell model[J]. Biomedical and Environmental Sciences, 2012,25(5):502-508.
[61] FLORES S R L, DOBBS J, DUNN M A. Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model[J]. Journal of Food Composition and Analysis, 2015,43:185-193.
[62] RODRIGUEZ-RAMRIO I, BREARLEY C A, BRUGGRUBER S F A, et al. Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model[J]. Food Chemistry, 2017,228:91-98.
[63] TAKENAK T, HARADA N, KUZE J, et al. Application of a human intestinal epithelial cell monolayer to the prediction of oral drug absorption in humans as a superior alternative to the Caco-2 cell monolayer[J]. Journal of Pharmaceutical Sciences, 2016,105(2):915-924.
[64] ANDRADE N, ARAUJO J R, CORREIA-BRANCO A, et al. Effect of dietary polyphenols on fructose uptake by human intestinal epithelial(Caco-2)cells[J]. Journal of Functional Foods, 2017,36:429-439.
[65] 朱叶萌,刘科,杨林,等.Caco-2细胞单层模型的建立及其研究进展[C]//中国毒理学会兽医毒理学与饲料毒理学学术讨论会暨兽医毒理专业委员会第4次全国代表大会会议论文集.北京:中国北京毒理学会,2012.
[66] BALIMANE P V, CHONG S. Cell culture-based models for intestinal permeability: A critique[J]. Drug Discovery Today, 2005,10(5):335-343.
[67] SAEZ-TENORIN M, DOMENECH J, GARCIA-RODRIGUEZ A, et al. Assessing the relevance of exposure time in differentiated Caco-2/HT29 cocultures. Effects of silver nanoparticles[J]. Food and Chemical Toxicology, 2019,123:258-267.
[68] LI Y, ARRANZ E, GURI A, et al. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX[J]. Food Research International, 2017,92(2):128-137.
[69] FERRARETTO A, BOTTANI M, DE LUCA P, et al. Morphofunctional properties of a differentiated Caco2/HT-29 co-culture as an in vitro model of human intestinal epithelium[J]. Bioscience Reports, 2018,38(2):BSR20171497.
[70] GAGNON M, ZILHER BERNER A, CHERVET N, et al. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion[J]. Journal of Microbiological Methods, 2013,94(3):274-279.
[71] VAZQUEZ M, CALATAYUD M, VELEZ D, et al. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells[J]. Toxicology, 2013,311(3):147-153.
[72] STUKNYTE M, MAGGIONI M, CATTANEO S, et al. Release of wheat gluten exorphins A5 and C5 during in vitro gastrointestinal digestion of bread and pasta and their absorption through an in vitro model of intestinal epithelium[J]. Food Research International, 2015,72:208-214.
[73] ZHANG Z P, ZHANG R J, XIAO H, et al. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials[J]. NanoImpact, 2019,13:13-25.
[74] KADIYALA I, LOO Y, ROY K, et al. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes[J]. European Journal of Pharmaceutical Sciences, 2010,39(1):103-109.
[75] ARAUJO F, SARMENTO B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies[J]. International Journal of Pharmaceutics, 2013,458(1):128-134.

相似文献/References:

[1]康智明,王 彬,祝文烽,等.福建省明溪县农地土壤重金属的空间分异和潜在生态风险评价[J].福建农林大学学报(自然科学版),2015,44(02):212.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2015.02.020]
 KANG Zhi-ming,WANG Bin,ZHU Wen-feng,et al.Spatial variation, ecological risk and environmental pollution assessment of heavy metal of farmland soil in Mingxi County of Fujian Province[J].,2015,44(01):212.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2015.02.020]
[2]杨淏舟,李艳梅,陈奇伯,等.昆明市区18种常见绿化树种叶片重金属富集特征[J].福建农林大学学报(自然科学版),2017,46(05):584.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.05.017]
 YANG Haozhou,LI Yanmei,CHEN Qibo,et al.Enrichment characteristics of heavy metals in leaves of 18 species of common greening trees in Kunming[J].,2017,46(01):584.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.05.017]
[3]林 生,张家玮,李建宏,等.6种海南商品有机肥对Pb(Ⅱ)和Cu(Ⅱ)的复合吸附及解吸[J].福建农林大学学报(自然科学版),2018,47(01):97.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.01.015]
 LIN Sheng,ZHANG Jiawei,LI Jianhong,et al.Adsorption and desorption of Pb(Ⅱ)and Cu(Ⅱ)by six commercial organic fertilizers from Hainan province[J].,2018,47(01):97.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.01.015]
[4]张双双,陈晓斌,林冬梅,等.菌草灵芝菌糟的饲用安全性[J].福建农林大学学报(自然科学版),2013,42(04):414.
 ZHANG Shuang-shuang,CHEN Xiao-bin,LIN Dong-mei,et al.Safety of spent substrate after Ganoderma lucidum cultivation with Jucao as feed[J].,2013,42(01):414.
[5]詹艺舒,施乐乐,李 婕,等.4种有害重金属在毛木耳栽培过程中的积累规律[J].福建农林大学学报(自然科学版),2019,48(01):111.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.01.018]
 ZHAN Yishu,SHI Lele,LI Jie,et al.Accumulation of 4 heavy metals in cultivation process of Auricularia polytricha[J].,2019,48(01):111.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.01.018]
[6]刘燕飞,李荭荭,黄幸然,等.镉和铅在茶园土壤—茶树系统中分布及迁移特征[J].福建农林大学学报(自然科学版),2019,48(03):386.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.017]
 LIU Yanfei,LI Honghong,HUANG Xingran,et al.Distribution and migration characteristics of cadmium and lead in soil-tea tree system[J].,2019,48(01):386.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.017]
[7]袁 梦,沈宗泽,封 磊,等.一株耐锌细菌Sphingobacterium caeni S3的Zn2+吸附特征[J].福建农林大学学报(自然科学版),2019,48(05):656.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.05.019]
 YUAN Meng,SHEN Zongze,FENG Lei,et al.Zinc adsorption characteristics of a zinc-resistant bacterium Sphingobacterium caeni S3[J].,2019,48(01):656.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.05.019]
[8]杨文浩,李 佩,周碧青,等.生物炭缓解污染土壤中植物的重金属胁迫研究进展[J].福建农林大学学报(自然科学版),2019,48(06):695.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.06.003]
 YANG Wenhao,LI Pei,ZHOU Biqing,et al.Biochar-mediated alleviation of heavy metal stress in plants growing in contaminated soils: A review[J].,2019,48(01):695.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.06.003]
[9]杨塍希,国伟强,和文懿,等.火炬树幼苗对镉胁迫的生理响应及积累特性[J].福建农林大学学报(自然科学版),2020,49(03):334.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.03.008]
 YANG Chengxi,GUO Weiqiang,HE Wenyi,et al.Effects of Cd2+ on the physiological response and accumulation characteristics of Rhus typhina[J].,2020,49(01):334.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.03.008]

备注/Memo

备注/Memo:
收稿日期:2020-04-16 修回日期:2020-08-18
基金项目:国家自然科学基金资助项目(41967026); 云南省创新团队项目(202005AE160017); 云南农业基础研究联合专项面上项目(2018FG001-048); 国家林业和草原局林草科技创新青年拔尖人才项目(2020132613); 云南省高层次人才引进计划青年人才项目(YNQR-QNRC-2018-049).
作者简介:李梦莹(1991-),女,博士研究生.研究方向:环境污染与食品安全.Email:dreamy1024lee@163.com.通信作者向萍(1985-),男,特聘研究员.研究方向:环境污染与食品安全及人体健康.Email:ping_xiang@126.com.
更新日期/Last Update: 2021-01-15