[1]李 莹,夏丽丹,包明琢,等.铁氧化物影响下生物质炭对土壤细菌群落结构的影响[J].福建农林大学学报(自然科学版),2021,50(01):115-124.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016]
 LI Ying,XIA Lidan,BAO Mingzhuo,et al.Effects of biochar on the composition of bacterial community in brown soil under the influence of iron oxides[J].,2021,50(01):115-124.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016]
点击复制

铁氧化物影响下生物质炭对土壤细菌群落结构的影响()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年01期
页码:
115-124
栏目:
资源与环境
出版日期:
2021-01-18

文章信息/Info

Title:
Effects of biochar on the composition of bacterial community in brown soil under the influence of iron oxides
文章编号:
1671-5470(2021)01-0115-10
作者:
李 莹123 夏丽丹34 包明琢34 张燕林34 周垂帆34
1.福建省农业科学院农业质量标准与检测技术研究所,福建 福州 350003; 2.福建省农产品质量安全重点实验室,福建 福州 350003; 3.福建农林大学林学院,福建 福州 350002; 4.福建长汀红壤丘陵生态系统国家定位观测研究站,福建 福州 350002
Author(s):
LI Ying123 XIA Lidan34 BAO Mingzhuo34 ZHANG Yanlin34 ZHOU Chuifan34
1.Institute of Quality Standards and Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China; 2.Fujian Key Laboratory of Agro-products Qualitiy and Safety, Fuzhou, Fujian 350003, China; 3.College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; 4.Changting National Positioning Observation and Research Station of Red Soil Hill Ecosystem, Fuzhou, Fujian 350002, China
关键词:
水热炭 裂解炭 铁氧化物 细菌 群落结构
Keywords:
hydrochar pyrochar iron oxide bacteria community structure
分类号:
S154.3
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.01.016
文献标志码:
A
摘要:
为探究铁氧化物影响下不同制备方式获得的秸秆生物质炭(水热炭、裂解炭)对土壤细菌群落结构及组成的影响,以北方棕壤土为研究对象,分别添加铁氧化物、玉米秸秆及其制备产生的水热炭、裂解炭,进行为期120 d的室内培养试验.采用高通量测序技术,通过测定不同处理下土壤细菌16S rDNA V3~V4区序列,分析生物质炭及其与铁氧化物交互施用对土壤细菌群落结构的影响.结果表明:施用裂解炭对细菌丰度(Chao1指数)和多样性(Shannon指数)无明显影响,对细菌群落结构的影响也较小; 单独施用水热炭和玉米秸秆均显著降低了细菌的丰度和多样性(P<0.05),改变了土壤细菌群落结构,其中,施用水热炭后,土壤中变形菌门和放线菌门的相对丰度显著提高,而绿弯菌门和芽单胞菌门的相对丰度显著下降,表明水热炭对土壤细菌产生一定的负面影响; 相较于单独施用水热炭,铁氧化物与水热炭的混施则显著提高了细菌的丰度和多样性,利于绿弯菌门的生长,但显著降低了变形菌门的相对丰度,在一定程度上改良了土壤环境.因此,在施用水热炭的同时,建议添加铁氧化物以抵消水热炭对土壤理化性质的不利影响.冗余分析和相关性分析结果表明,NH+4-N含量是影响细菌群落丰度和多样性的主要因素,其他土壤理化性质也与细菌优势菌群之间具有显著相关性.
Abstract:
In order to explore the effects of biochar and its interaction with iron oxide on the structure and composition of bacterial community in brown soil, 2 kinds of straw-based biochar, manufactured by preparation methods of hydrochar and pyrochar were applied to brown soil collected from China's northern province of Shandong. Indoor incubation experiment, which was comprised of 8 treatments of maize straw, hydrochar, pyrochar and iron oxide was conducted for 120 d. High-throughput sequencing technology was used to determine the sequences of 16S rDNA V3-V4 region of soil bacteria from different treatments. The results showed that the application of pyrochar alone had no significant effect on bacterial abundance and diversity; the application of hydrochar and straw each significantly reduced the abundance and diversity of bacteria(P<0.05), resulting in changed microbial community structures. In the soil treated with hydrochar, the relative abundances of Proteobacteria and Actinomycetes were increased significantly, while the relative abundance of Chlorophyta and Blastomonas decreased significantly, implying certain negative effect of hydrochar exerted on soil bacteria. While in the soil supplemented with hydrochar and iron oxide, the abundance and diversity of bacteria were improved significantly, with enhanced growth of Chloroflexi and inhibited development of Proteobacteria, indicating a relatively improved soil quality. Therefore iron oxide is recommended when applying hydrochar for soil quality improvement as iron oxide is considered to offset some adverse effects from hydrochar. Redundancy analysis and correlation analysis revealed that NH+4-N was the dominant factor affecting the abundance and diversity of bacterial communities; other soil physical and chemical properties were also significantly related to dominant bacterial species.

参考文献/References:

[1] WANG J, WANG S. Preparation, modification and environmental application of biochar: a review[J]. Journal of Cleaner Production, 2019,227:1002-1022.
[2] 杨彩迪,宗玉统,卢升高.不同生物炭对酸性农田土壤性质和作物产量的动态影响[J].环境科学,2020,41(4):1914-1920.
[3] YU S, FENG Y, XUE L, et al. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids[J]. Journal of Cleaner Production, 2019,240:118180.
[4] 俞盈,韩兰芳,姜晓满.水热炭的制备、结构特征和应用[J].环境化学,2018,37(6):1232-1244.
[5] 侯朋福,薛利红,冯彦房,等.废弃物基水热炭改良对水稻产量及氮素吸收的影响[J].环境科学,2020,41(12):5648-5655.
[6] HAO S, ZHU X, LIU Y, et al. Production temperature effects on the structure of hydrochar-derived dissolved organic matter and associated toxicity[J]. Environmental Science & Technology, 2018,52(13):7486-7495.
[7] SUN Y, GAO B, YAO Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical Engineering Journal, 2014,240:574-578.
[8] GHIDOTTI M, FABBRI D, MAEK O, et al. Source and biological response of biochar organic compounds released into water.Relationships with bio-oil composition and carbonization degree[J]. Environmental Science & Technology, 2017,51(11):6580-6589.
[9] CONSTANCIAS F, PRÉVOST-BOURÉ N C, TERRAT S, et al. Microscale evidence for a high decrease of soil bacterial density and diversity by cropping[J]. Agronomy for Sustainable Development, 2014,34(4):831-840.
[10] 安然,马风云,崔浩然,等.黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析[J].生态学报,2019,39(21):7960-7967.
[11] O'NEILL B, GROSSMAN J, TSAI M T, et al. Bacterial community composition in brazilian anthrosols and adjacent soils characterized using culturing and molecular identification[J]. Soil Microbiology, 2009,58(1):23-35.
[12] 乌英嗄,张贵龙,赖欣,等.生物炭施用对华北潮土土壤细菌多样性的影响[J].农业环境科学学报,2014,33(5):965-971.
[13] LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012,483:198-200.
[14] SODANO M, LERDA C, NISTIC R, et al. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron[J]. Geoderma, 2017,307:19-29.
[15] COWARD E, OHNO T, PLANTE A. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018,52(3):1036-1044.
[16] 万丹.铁氧化物和钙离子对土壤有机碳的固定及有机质对Pb形态转化的影响[D].武汉:华中农业大学,2019.
[17] 文永莉.不同施肥条件下旱地红壤铁铝氧化物转化与固碳机理研究[D].南京:南京农业大学,2017.
[18] 谢发之,圣丹丹,胡婷婷,等.针铁矿对焦磷酸根的吸附特征及吸附机制[J].应用化学,2016,33(3):343-349.
[19] SCHULZ H, GLASER B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition & Soil Science, 2012,175(3):410-422.
[20] 胡瑞文,刘勇军,周清明.等.生物炭对烤烟根际土壤微生物群落碳代谢的影响[J].中国农业科技导报,2018,20(9):49-56.
[21] 胡华英,殷丹阳,曹升,等.生物炭对杉木人工林土壤养分、酶活性及细菌性质的影响[J].生态学报,2019,39(11):4138-4148.
[22] 刘赛男.生物炭影响土壤磷素、钾素有效性的微生态机制[D].沈阳:沈阳农业大学,2016.
[23] SUN K, HAN L, YANG Y, et al. Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil[J]. Environmental Science & Technology, 2020,54(5):2715-2725.
[24] LIU J, SUI Y, YU Z, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology & Biochemistry, 2014,70:113-122.
[25] 唐美玲.稻田土壤中不同稳定性有机碳的周转特征及其碳铁耦合机制[D].长沙:中南林业科技大学,2019.
[26] 朱兆香.土壤放线菌的筛选、鉴定及其活性代谢产物的研究[D].哈尔滨:东北农业大学,2011.
[27] KHODADAD C L M, ZIMMERMAN A R, GREEN S J, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology & Biochemistry, 2011,43(2):385-392.
[28] 陈梅春,朱育菁,刘波,等.基于宏基因组茉莉花植株土壤细菌多样性研究[J].农业生物技术学报,2018,26(9):1480-1493.
[29] 丁新景,黄雅丽,敬如岩,等.基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究[J].生态学报,2018,38(16):5857-5864.
[30] EUSTERHUES K, NEIDHARDT J, HÄDRICH A, et al. Biodegradation of ferrihydrite-associated organic matter[J]. Biogeochemistry, 2014,119(1/3):45-50.
[31] HUANG X, XIA Z B, HORWATH W R, et al. Effect of iron oxide on nitrification in two agricultural soils with different pH[J]. Biogeosciences Discussions, 2016,13(19):5609-5617.
[32] 黄学茹.铁氧化物与有机质对酸性土壤硝化作用的影响[D].重庆:西南大学,2016.

备注/Memo

备注/Memo:
收稿日期:2020-07-05 修回日期:2020-08-03
基金项目:国家自然科学基金面上项目(32071746); 福建省自然科学基金资助项目(2020J01520); 福建农林大学林学高峰学科建设优秀青年培育工程项目(71201800727).
作者简介:李莹(1986-),女,助理研究员.研究方向:生物炭土壤修复.Email:407541808@qq.com.通信作者周垂帆(1986-),男,副教授.研究方向:水土保持和环境治理.Email:zhouchuifan@163.com.
更新日期/Last Update: 2021-01-15