[1]杨玉山,沈华杰,邱 坚.基于纳米压印技术的遗态仿生设计各向异性超疏水木材[J].福建农林大学学报(自然科学版),2021,50(01):134-139.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.018]
 YANG Yushan,SHEN Huajie,QIU Jian.Anisotropic superhydrophobic wood surface using morph-genetic plant via nanoimprint lithography[J].,2021,50(01):134-139.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.01.018]
点击复制

基于纳米压印技术的遗态仿生设计各向异性超疏水木材()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年01期
页码:
134-139
栏目:
材料工程
出版日期:
2021-01-18

文章信息/Info

Title:
Anisotropic superhydrophobic wood surface using morph-genetic plant via nanoimprint lithography
文章编号:
1671-5470(2021)01-0134-06
作者:
杨玉山 沈华杰 邱 坚
西南林业大学材料科学与工程学院,云南 昆明 650224
Author(s):
YANG Yushan SHEN Huajie QIU Jian
College of Materials Science and Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China
关键词:
白蜡木 遗态仿生 纳米压印 茭草叶 多尺度微纳米结构 各向异性超疏水
Keywords:
ash wood morph-genetic process nanoimprint lithography Zizania leaf multi-scale micro/nanostructure anisotropic superhydrophobicity
分类号:
TS652; TB306
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.01.018
文献标志码:
A
摘要:
采用纳米压印技术与硅烷化接枝改性处理相结合的方法,将遗态材料茭草叶表面的微纳米槽棱构筑于木材表面,得到遗态仿生各项异性超疏水木材.通过SEM、EDS、XRD、FTIR以及WCA对试样的微观形貌、化学元素组成、表面化学状态以及润湿性进行表征.结果表明:遗态仿生各向异性超疏水木材表面具有与茭草叶类似的微观形貌; 其水接触角为158°,表现出超疏水性能; 此外,其表面的水滴在翻转至垂槽方向时,水滴粘附在试样表面没有滴落,而平槽方向上水滴迅速滚落,表现各项异性.同时,经不同温度蒸煮处理后对其稳定超疏水性进行了测试,结果表明其水接触角均大于150°,仍具有超疏水特性,制备的超疏水木材表面具有耐久性与耐候性.
Abstract:
A combination of nanoimprint lithography and silane grafting modification was used to transfer the micro- and nano-slotted ribs locating on the surface of Zizania leaves onto wood surface, in order to create a biomimetic wood material with anisotropic superhydrophobicity. The microstructure, chemical element composition, surface chemistry and wettability of the specimen were characterized by scanning electron microscope, energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy and water contact angle. The results showed that the microscopic surface of the wood specimens resembled that of Zizania leaf. The water contact angle of the modified wood specimens was 158°, showing superhydrophobic property. When flipping in the vertical groove direction, water droplets did not disperse or stick to the wood surface. Instead, they rolled down quickly in the flat groove direction on the specimen surface, showing good anisotropy performance. The stability of the superhydrophobicity was further tested by sandpaper abrasion test and different temperatures of boiling treatment. After the tests, the water contact angles still exceeded 150°, implying that the superhydrophobic property was still maintained. Therefore, the modified superhydrophobic wood surface also has durability and weather resistance.

参考文献/References:

[1] 张荻,张书倩,张旺,等.启迪于自然的遗态功能材料[J].中国材料进展,2018,37(10):25-35.
[2] ZHANG W, ZHANG D, FAN T X. Novel photoanode structure templated from butterfly wing scales[J]. Chemistry of Materials: A Publication of the American Chemistry Society, 2009,21(1):33-40.
[3] 张旺,顾佳俊,苏慧兰,等.启迪于蝶翅分级精细结构的遗态功能材料[J].中国材料进展,2015,34(9):630-639.
[4] OKABE T, SAITO, K. Development of woodceramics[J]. Ecomaterials, 1994,18:681-684.
[5] 刘海兵.PCl2活化的木材表面化学镀镍制备电磁屏蔽材料[D].哈尔滨:东北林业大学,2011.
[6] 许佳琪,沈海颖,曹金珍.TiO2/PDMS增强表面热改性木材耐老化性的协同效应[J].北京林业大学学报,2018,40(4):109-116.
[7] YUSOF N M, TAHIR P M, LEE S H, et al. Mechanical and physical properties of cross-laminated timber made from Acacia mangium wood as function of adhesive types[J]. Journal of Wood Science, 2019,65(1):20.
[8] 杨玉山,沈华杰,邱坚.基于模板印刷法的仿生超疏水木材的研制[J].西南林业大学学报,2018,38(6):187-191.
[9] GAO L K, GAN W, XIAO S, et al. A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016,42(2):2170-2179.
[10] WANG S L, LIU C Y, LIU G C, et al. Fabrication of superhydrophobic wood surface by a sol-gel process[J]. Applied Surface Science, 2011,258(2):806-810.
[11] 刘峰,王成毓.木材仿生超疏水功能化制备方法[J].科技导报,2016,34(19):120-126.
[12] 蒋汇川,陆全济,李民,等.阻燃处理对热改性橡胶木表面润湿性的影响[J].热带农业科学,2019,39(6):74-78.
[13] 张康康,李玮,杨玉山,等.基于纳米压印技术的仿生超疏水TiO2/FAS-17木材研制[J].福建农林大学学报(自然科学版),2020,49(2):272-276.
[14] TU K K, WANG X W, KONG L Z, et al. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood[J]. Materials & Design, 2018,140:30-36.
[15] YANG Y S, HE H S, LI Y G, et al. Using nanoimprint lithography to create robust, buoyant, superhydrophobic PVB/SiO2 coatings on wood surfaces Inspired by red roses petal[J]. Scientific Reports, 2019,9(1):1-9.
[16] JIA S S, CHEN H B, LUO S, et al. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: driving of alkali[J]. Applied Surface Science, 2018,455:115-122.
[17] 杨玉山,沈华杰,邱坚.基于纳米SiO2-PDMS体系的耐磨超疏水木材表面构建与特性评价[J].西南林业大学学报(自然科学版),2019,39(6):160-166.

备注/Memo

备注/Memo:
收稿日期:2020-03-01 修回日期:2020-06-15
基金项目:云南省教育厅资助项目(2019Y0117); 西南林业大学创新基金项目(201919); 国家重点研究计划项目(2016YFD0600702).
作者简介:杨玉山(1992-),男.研究方向:生物质材料.Email:yyshwqq@163.com.通信作者邱坚(1965-),男,教授.研究方向:生物质材料.Email:qiujianswfu@foxmail.com.
更新日期/Last Update: 2021-01-15