[1]王 杰,童 璐,巨学阳,等.茶树对茶小绿叶蝉为害的响应及其机制研究进展[J].福建农林大学学报(自然科学版),2021,50(02):145-154.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.001]
 WANG Jie,TONG Lu,JU Xueyang,et al.Progress on the induced defense of tea plants(Camellia sinensis)in response to the attack of tea green leafhopper(Empoasca onukii)and its mechanism[J].,2021,50(02):145-154.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.001]





Progress on the induced defense of tea plants(Camellia sinensis)in response to the attack of tea green leafhopper(Empoasca onukii)and its mechanism
王 杰12 童 璐1 巨学阳1 罗智捷1 薛蓉蓉1 高 州1 曾任森12 宋圆圆12
闽台作物有害生物生态防控国家重点实验室,福建 福州 350002
WANG Jie12 TONG Lu1 JU Xueyang1 LUO Zhijie1 XUE Rongrong1 GAO Zhou1 ZENG Rensen12 SONG Yuanyuan12
1.Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University; 2.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
茶树 茶小绿叶蝉 防御反应 代谢物 茶叶品质
tea plant tea green leafhopper defense response metabolites tea quality
The relationship between tea green leafhopper(Empoasc aonukii Matsuda)and tea plant(Camellia sinensis)is complex, and there is still a lack of knowledge on its interaction mechanism. We reviewed the current research on the potential mechanism of the interaction between E.onukii and C.sinensis, including secretion of E.onukii regulating defense response of tea plant, molecular changes in the tea plant against E.onukii, and the role of metabolites in mediating E.onukii-tea plant interactions. Lastly, we proposed some perspectives for future investigations. Hopefully, this paper will contribute to the knowledge on the complex relationship between E.onukii and the tea plant, and provide an important theoretical basis for the development of new technologies on pest control and quality improvement of tea.


[1] XIA E, TONG W, WU Q, et al. Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020,7(1):1-19.
[2] YANG Z, BALDEMANN S, WATANABE N. Recent studies of the volatile compounds in tea[J]. Food Research International, 2013,53(2):585-599.
[3] 张汉鹄,韩宝瑜.中国茶树昆虫区系及其区域性发生[J].茶叶科学,1999,19(2):81-86.
[4] 王庆森,王定锋,吴光远.我国茶树假眼小绿叶蝉研究进展[J].福建农业学报,2013,28(6):615-623.
[5] 张君岱,涂修亮,毛迎新,等.中国茶树小贯小绿叶蝉研究进展[J].湖北农业科学,2017,56(12):2204-2208.
[6] MU D, CUI L, GE J, et al. Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis[J]. Insect Science, 2012,19(2):229-238.
[7] 庄家祥,傅建炜,苏庆泉,等.福建省茶小绿叶蝉抗药性的地区差异[J].茶叶科学,2009,29(2):154-158.
[8] 曾玲,刘仲华.提高我国茶叶国际市场竞争力的策略探讨[J].中国茶叶,2008,30(6):20-22.
[9] 姜含春,汪小谷,赵红鹰,等.试用“SWOT”法探讨我国茶叶国际市场竞争力及其对策[J].茶叶科学,2004,24(3):159-165.
[10] SCOTT E R, ORIANS C M. Differential changes in tea quality as influenced by insect herbivory[M]∥HAN W, LI X, AHAMMED G. Stress physiology of tea in the face of climate change. Singapore: Springer, 2018:217-240.
[11] CHO J Y, MIZUTANI M, SHIMIZU B, et al. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”[J]. Bioscience, Biotechnology, and Biochemistry, 2007,71(6):1476-1486.
[12] 赵小嫚.多组学技术探究茶树响应小绿叶蝉吸食的防御反应[D].福州:福建农林大学,2019.
[13] 张正竹,宛晓春.茶园中以挥发物糖苷为载体的化感作用[J].中国农学通报,2005,21(10):53-56.
[14] WU J, BALDWIN I T. New insights into plant responses to the attack from insect herbivores[J]. Annual Review of Genetics, 2010,44:1-24.
[15] ERB M, REYMOND P. Molecular interactions between plants and insect herbivores[J]. Annual Review of Plant Biology, 2019,70(1):527-557.
[16] 张月白,娄永根.植物与植食性昆虫化学互作研究进展[J].应用生态学报,2020,31(7):2151-2160.
[17] BACKUS E A, SERRANO M S, RANGER C M. Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology[J]. Annual Review of Entomology, 2005,50:125-151.
[18] MADHUSUDHAN V V, MILE P W. Mobility of salivary components as a possible reason for differences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid[J]. Entomologia Experimentalis et Applicata, 1998,86:25-39.
[19] MEI X, LIU X, ZHOU Y, et al. Formation and emission of linalool in tea(Camellia sinensis)leaves infested by tea green leafhopper(Empoasca(Matsumurasca)onukii Matsuda)[J]. Food Chemistry, 2017,237:356-363.
[20] ZHOU Y, LIU X, YANG Z. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea(Camellia sinensis)leaves and potential effect of geraniol on insect-derived endobacteria[J]. Biomolecules, 2019,9(12):1-17.
[21] MULLER G C, JUNNILA A, BUTLER J, et al. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes[J]. Journal of Vector Ecology, 2009,34(1):2-8.
[22] 汪晓茜.假眼小绿叶蝉海藻糖酶基因的克隆及表达研究[D].杭州:中国计量大学,2018.
[23] CHEN J, TANG B, CHEN H, et al. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference[J]. PLoS ONE, 2010,5(4):e10133.
[24] KRISHNAVENI S, MUTHUKRISHANAN S, LIANG G H, et al. Induction of chitinases and β-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack fungal infection and wounding[J]. Plant Science, 1999,144:9-16.
[25] FERNANDEZ O O, BETHENCOURT L, QUERO A, et al. Trehalose and plant stress responses: friend or foe?[J]. Trends in Plant Science, 2010,15(7):409-417.
[26] 于永晨,肖斌,孙晓玲.小贯小绿叶蝉半胱氨酸蛋白酶基因的克隆与表达[J].茶叶科学,2018,38(3):263-270.
[27] CRISTOFOLETTI P T, RIBEIRO A F, DERAISON C, et al. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum[J]. Journal of Insect Physiology, 2003,49(1):11-24.
[28] COHEN A C. Solid-to-liquid feeding: the inside(s)story of extra-oral digestion in predaceous Arthropoda[J]. American Entomologist, 1998,44(2):103-117.
[29] ZHU Y C, ZENG F, OPPERT B. Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris(Heteroptera: Miridae)[J]. Insect Biochemistry and Molecular Biology, 2003,33(9):889-899.
[30] 罗智捷.茶小绿叶蝉唾液介导茶树抗虫防御及其机理的研究[D].福州:福建农林大学,2020.
[31] MATTIACCI L, DICKE M, POSTHUMUS M A. β-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proceedings of the National Academy of Sciences, 1995,92(6):2036-2040.
[32] 殷海娣,黄翠虹,薛堃,等.昆虫唾液成分在昆虫与植物关系中的作用[J].昆虫学报,2006,49(5):843-849.
[33] 王晓,沈程文,周跃斌.β-葡萄糖苷酶与茶增香及抗病虫害的研究进展[J].茶叶通讯,2014,41(4):8-12.
[34] LUAN F, MOSANDL A, DEGENHARDT A, et al. Metabolism of linalool and substrate analogs in grape berry mesocarp of Vitis vinifera L. cv. Morio Muscat: demonstration of stereoselective oxygenation and glycosylation[J]. Analytica Chimica Acta, 2006,563(1/2):353-364.
[35] ZENG L, WATANABE N, YANG Z. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea(Camellia sinensis)to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019,59(14):2321-2334.
[36] ACEVEDO F E, RIVERA-VEGA L J, CHUNG S H, et al. Cues from chewing insects the intersection of DAMPs, HAMPs, MAMPs and effectors[J]. Current Opinion in Plant Biology, 2015,26:80-86.
[37] BONAVENTURE G. Perception of insect feeding by plants[J]. Plant Biology, 2012,14(6):872-880.
[38] ARIMURA G, OZAWA R, MAFFEI M E. Recent advances in plant early signaling in response to herbivory[J]. International Journal of Molecular Sciences, 2011,12(6):3723-3739.
[39] VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016,16(1):1-10.
[40] BARI R, JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009,69(4):473-488.
[41] THALER J S, HUMPHREY P T, WHITEMAN N K. Evolution of jasmonate and salicylate signal crosstalk[J]. Trends in Plant Science, 2012,17(5):260-270.
[42] RIOJA C, ZHUROV V, BRUINSMA K, et al. Plant-herbivore interactions: a case of an extreme generalist, the two-spotted spider mite Tetranychus urticae[J]. Molecular Plant-Microbe Interactions, 2017,30(12):935-945.
[43] LIAO Y, YU Z, LIU X, et al. Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea(Camellia sinensis)leaves[J]. Journal of Agricultural and Food Chemistry, 2019,67(24):6716-6724.
[44] ZHAO X, CHEN S, WANG S, et al. Defensive responses of tea plants(Camellia sinensis)against tea green leafhopper attack: a multi-omics study[J]. Frontiers in Plant Science, 2020,10:1-17.
[45] DIATCHENKO L, LAU Y F, CAMPBELL A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proceedings of the National Academy of Sciences, 1996,93(12):6025-6030.
[46] 苗进.外源MeSA诱导茶树防御假眼小绿叶蝉机理的研究[D].北京:中国农业科学院,2008.
[47] 王芬,裴会敏,文狄,等.都匀毛尖茶树叶片响应茶小绿叶蝉侵染的转录组分析[J].分子植物育种,2019,17(22):7357-7367.
[48] RUAN J, ZHOU Y, ZHOU M, et al. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019,20(10):1-15.
[49] 乔明明,张丽霞,田月月,等.台湾金萱茶树品种引种及利用研究进展[J].中国茶叶,2016,38(11):18-20.
[50] 刘声传,鄢东海,周国兰,等.茶树新品种’贵定鸟王种’[J].园艺学报,2016,43(S2):2837-2838.
[51] WANG W, ZHENG C, HAO W, et al. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis[J]. PLoS ONE, 2018,13(8):e201670.
[52] WEI C, YANG H, WANG S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018,115(18):4151-4158.
[53] 林海燕,曾超珍,谭斌,等.转录组学技术在茶树抗逆性的研究进展[J].分子植物育种,2019,17(3):803-810.
[54] YANG H, XIE S, WANG L, et al. Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper[J]. Scientia Horticulturae, 2011,130(2):476-481.
[55] GOHAIN B, BORCHETIA S, BHORALI P, et al. Understanding Darjeeling tea flavor on a molecular basis[J]. Plant Molecular Biology, 2012,78(6):577-597.
[56] HARE J D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects[J]. Annual Review of Entomology, 2011,56(1):161-180.
[57] ZHANG H, LI Y, LV Y, et al. Influence of brewing conditions on taste components in Fuding white tea infusions[J]. Journal of the Science of Food and Agriculture, 2017,97(9):2826-2833.
[58] NOBRE A C, RAO A, OWEN G N. L-theanine, a natural constituent in tea, and its effect on mental state[J]. Asia Pacific Journal of Clinical Nutrition, 2008,17(1):167-168.
[59] VUONG Q V, BOWYER M C, ROACH P D. L-Theanine: properties, synthesis and isolation from tea[J]. Journal of the Science of Food and Agriculture, 2011,91(11):1931-1939.
[60] 王敏,凌志,曹藩荣.小绿叶蝉不同为害程度对鲜叶化学成分的影响[J].广东茶业,2017(4):12-14.
[61] LEVIN D A. Plant phenolics: an ecological perspective[J]. The American Naturalist, 1971,105:157-181.
[62] YU P, YEO A S, LOW M, et al. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile[J]. Food Chemistry, 2014,155:9-16.
[63] TREUTTER D. Significance of flavonoids in plant resistance: a review[J]. Environmental Chemistry Letters, 2006,4(3):147-157.
[64] LI J, SHI M, FU J, et al. Physiological and biochemical responses of Camellia sinensis to stress associated with Empoasca vitis feeding[J]. Arthropod-Plant Interactions, 2018,12(1):65-75.
[65] NAFIE E, HATHOUT T, Al MOKADEM A S. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells[J]. Brazilian Journal of Plant Physiology, 2011,23(2):161-174.
[66] WANG Y, TANG L, HOU Y, et al. Differential transcriptome analysis of leaves of tea plant(Camellia sinensis)provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq[J]. Functional & Integrative Genomics, 2016,16(4):383-398.
[67] SHAO W, POWELL C, CLIFFORD M N. The analysis by HPLC of green, black and Pu’er teas produced in Yunnan[J]. Journal of the Science of Food and Agriculture, 1995,69(4):535-540.
[68] ZHANG Y, YIN J, CHEN J, et al. Improving the sweet aftertaste of green tea infusion with tannase[J]. Food Chemistry, 2016,192:470-476.
[69] LIN Y, TSAI Y, TSAY J, et al. Factors affecting the levels of tea polyphenols and caffeine in tea leaves[J]. Journal of Agricultural and Food Chemistry, 2003,51(7):1864-1873.
[70] 邹武,林乃铨,王庆森.福建主要茶树品种理化特性与假眼小绿叶蝉种群数量的相关性分析[J].华东昆虫学报,2006,15(2):129-134.
[71] 金珊,孙晓玲,张新忠,等.8个茶树品种生化成分分析及抗性成分的初步鉴定[J].应用昆虫学报,2016,53(3):516-527.
[72] 潘杰.茶树抗性相关蛋白对假眼小绿叶蝉消化道组织的影响[D].厦门:厦门大学,2014.
[73] 张贻礼,张觉晚,杨阳,等.茶树抗虫品种资源调查及抗性机制研究——Ⅱ.不同品种茶树特征特性对假眼小绿叶蝉抗性的相关分析[J].茶叶通讯,1994(2):4-6.
[74] 张觉晚,王沅江,黄亚辉.茶树抗虫品种资源调查及抗性机制研究——Ⅰ.茶树品种对假眼小绿叶蝉抗性的筛选、鉴定[J].茶叶通讯,1994(1):2-5.
[75] CHIEN H J, YANG M M, WANG W C, et al. Proteomic analysis of ’Oriental Beauty’ oolong tea leaves with different degrees of leafhopper infestation[J]. Rapid Communications in Mass Spectrometry, 2020,34(15):e8825.
[76] MATSUI K. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism[J]. Current Opinion in Plant Biology, 2006,9(3):274-280.
[77] 徐秀秀.茶树挥发物对假眼小绿叶蝉的引诱作用及影响因子研究[D].北京:中国农业科学院,2015.
[78] XIN Z, LI X, LI J, et al. Application of chemical elicitor(Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua[J]. BioControl, 2016,61(1):1-12.
[79] CAI X, SUN X, DONG W, et al. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants[J]. Chemoecology, 2014,24(1):1-14.
[80] DEGENHARDT D C, LINCOLN D E. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure[J]. Journal of Chemical Ecology, 2006,32(4):725-743.
[81] MASON C J, JONES A G, FELTON G W. Co-option of microbial associates by insects and their impact on plant-folivore interactions[J]. Plant, Cell & Environment, 2019,42(3):1078-1086.
[82] 金珊,韩李伟,叶乃兴,等.茶小绿叶蝉危害乌龙茶茶树品种的挥发物分析[J].热带作物学报,2019,40(3):576-582.
[83] 赵冬香,陈宗懋,程家安.茶树-假眼小绿叶蝉-白斑猎蛛间化学通讯物的分离与活性鉴定[J].茶叶科学,2002(2):109-114.
[84] 王国昌.三种害虫诱导茶树挥发物的生态功能[D].北京:中国农业科学院,2010.
[85] 蔡晓明.三种茶树害虫诱导茶树挥发物的释放规律[D].北京:中国农业科学院,2009.
[86] 穆丹.茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效[D].北京:中国农业科学院,2011.
[87] 韩善捷,潘钺,韩宝瑜.假眼小绿叶蝉为害致茶梢挥发物变化及其引诱微小裂骨缨小蜂效应[J].中国生物防治学报,2016,32(2):142-148.
[88] 王梦馨,李辉仙,武文竹,等.假眼小绿叶蝉对茶梢挥发物的行为反应[J].应用昆虫学报,2016,53(3):507-515.
[89] ZENG L, LIAO Y, LI J, et al. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea(Camellia sinensis)plants[J]. Plant Science, 2017,264:29-36.
[90] DONG F, YANG Z, BALDERMANN S, et al. Herbivore-induced volatiles from tea(Camellia sinensis)plants and their involvement in intra plant communication and changes in endogenous nonvolatile metabolites[J]. Journal of Agricultural and Food Chemistry, 2011,59(24):13131-13135.
[91] THELEN G C, VIVANCO J M, NEWINGHAM B, et al. Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives[J]. Ecology Letters, 2005,8(2):209-217.
[92] CHEN S, ZHANG L, CAI X, et al.(E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants[J]. Horticulture Research, 2020,7(1):1-15.
[93] SHIKANO I, ROSA C, TAN C W, et al. Tritrophic interactions: microbe-mediated plant effects on insect herbivores[J]. Annual Review of Phytopathology, 2017,55:313-331.
[94] MASON C J. Complex relationships at the intersection of insect gut microbiomes and plant defenses[J]. Journal of Chemical Ecology, 2020,46(8):793-807.
[95] 毛迎新,谭荣荣,王友平,等.基于16S rDNA序列的小贯小绿叶蝉共生细菌多样性研究[J].植物保护,2018,44(3):17-23.
[96] BARR K L, HEARNE L B, BRIESACHER S, et al. Microbial symbionts in insects influence down-regulation of defense genes in maize[J]. PLoS ONE, 2010,5(6):e11339.
[97] CEJA-NAVARRO J A, VEGA F E, KARAOZ U, et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee[J]. Nature Communications, 2015,6(1):1-9.
[98] MASON C J, LOWE-POWER T M, RUBERT-NASON K F, et al. Interactions between bacteria and aspen defense chemicals at the phyllosphere-herbivore interface[J]. Journal of Chemical Ecology, 2016,42(3):193-201.
[99] CARVALHAIS L C, DENNIS P G, BADRI D V, et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes[J]. Molecular Plant-Microbe Interactions, 2015,28(9):1049-1058.
[100] YANG H, WANG Y, LI L, et al. Transcriptomic and phytochemical analyses reveal root-mediated resource-based defense response to leaf herbivory by Ectropis oblique in tea plant(Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2019,67(19):5465-5476.
[101] AHMED S, STEPP J R, ORIANS C, et al. Effects of extreme climate events on tea(Camellia sinensis)functional quality validate indigenous farmer knowledge and sensory preferences in tropical China[J]. PLoS ONE, 2014,9(10):e109126.


[1]刘 威,叶乃兴,刘 伟,等.茶树炭疽菌的鉴定及致病力分析[J].福建农林大学学报(自然科学版),2015,44(06):581.[doi:10.13323/j.cnki.j.fafunat.sci.2015.06.004]
 LIU Wei,YE Nai-xing,LIU Wei,et al.Identification and pathogenic analysis of the pathogen causing tea plantCamellia sinensis)anthracnose[J].,2015,44(02):581.[doi:10.13323/j.cnki.j.fafunat.sci.2015.06.004]
 LAI Jiandong,WEI Rifeng,LIAN Lingli,et al.Changes in physiological properties of tea leaf infected by Colletotrichum kahawae[J].,2016,45(02):162.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2016.02.007]
 MO Lan,HUANG Yahui,ZHAO Wenfang,et al.Analysis of biochemical components of wild tea colonies in Jinxiu[J].,2018,47(02):409.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.04.005]
 CHEN Mingfeng,LIN Guifang,JIANG Xiaoyan,et al.Analysis on the potential Bt receptors in the transcriptome of Empoasca flavescens[J].,2019,48(02):1.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.01.001]
 YAO Xueqian,ZHENG Yucheng,WANG Pengjie,et al.Genetic analysis of differential gene expression between Jinguanyin and its parents[J].,2019,48(02):155.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.02.004]
 TANG Xiuhua,SUN Weijiang,HONG Yaoxin,et al.Differential expression of genes associated with anthocyanin synthesis in Camellia sinensis varieties with different leaf colors[J].,2019,48(02):742.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.06.009]
 TANG Xiuhua,SUN Weijiang,CHEN Zhidan,et al.Promoter cloning and expression analysis of CsPAL3 gene in tea plant(Camellia sinensis)[J].,2020,49(02):320.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2020.03.006]


收稿日期:2020-09-29 修回日期:2020-11-18
基金项目:国家自然科学基金(31701855); 福建省自然科学基金(2018J0106); 中国博士后科学基金(2019M652237、2020T130099); 福建农林大学杰出青年基金(KXJQ17013).
更新日期/Last Update: 2021-02-15