[1]罗碧珍,罗永海.开花植物CO/FT分子途径的生物学功能和分子进化[J].福建农林大学学报(自然科学版),2021,50(02):155-163.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002]
 LUO Bizhen,LUO Yonghai.The biological function and molecular evolution of CO/FT pathway in flowering plants[J].,2021,50(02):155-163.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002]
点击复制

开花植物CO/FT分子途径的生物学功能和分子进化()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年02期
页码:
155-163
栏目:
综述
出版日期:
2021-02-15

文章信息/Info

Title:
The biological function and molecular evolution of CO/FT pathway in flowering plants
文章编号:
1671-5470(2021)02-0155-09
作者:
罗碧珍 罗永海
福建农林大学生命科学学院,福建 福州 350002
Author(s):
LUO Bizhen LUO Yonghai
College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
关键词:
光周期 CO FT 基因家族 功 能分化
Keywords:
photoperiod CO FT gene family functional divergence
分类号:
Q94
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002
文献标志码:
A
摘要:
开花是被子植物的重要生物学行为,关系到植物种群的维持与繁衍.CONSTANS(CO)和FLOWERING LOCUS T(FT)是植物开花分子调控网络中的2个关键基因,形成CO/FT途径协同作用,受光周期途径调控,在植物成花转变过程中扮演枢纽的角色.CO/FT途径有古老的系统发育源头,在物种进化过程中处于调控个体生长与繁育的核心位置,在同一物种内或不同物种间存在高度的功能多样性,参与了众多生物学途径或植物器官发育调控.本文总结了CO/FT途径及其所在基因家族成员的生物学功能及其分化,结合近年来的新进展,对CO/FT途径的研究进行了展望.
Abstract:
Flowering is a vital biological process for species maintenance and propagation in angiosperm. CONSTANS(CO)and FLOWERING LOCUS T(FT)are two key genes that involve in the genetic network which regulates plant flowering. The CO and FT genes form a synergistic pathway which is influenced by photoperiod. The CO/FT pathway has an ancient phylogenetic origin and plays pivotal roles in individual growth and reproduction in land plants. In this review, we summarized the biological functions and divergences of the CO/FT pathway, and the members of related gene families, highlighted recent advances in the field, and proposed the future research directions.

参考文献/References:

[1] BLÁZQUEZ M A, AHN J H, WEIGEL D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics, 2003,33(2):168-171.
[2] AMASINO R. Seasonal and developmental timing of flowering[J]. Plant Journal, 2010,61(6):1001-1013.
[3] GONG W. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes[J]. Plant Physiology, 2004,135(2):773-782.
[4] PUTTERILL J, ROBSON F, LEE K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell, 1995,80(6):847-857.
[5] FORNARA F, PANIGRAHI K C S, GISSOT L, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell, 2009,17(1):75-86.
[6] SAWA M, NUSINOW D A, KAY S A, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science, 2007,318:261-265.
[7] YEON H D, SANGKYU P, SUNGBEOM L, et al. GIGANTEA regulates the timing stabilization of CONSTANS by altering the interaction between FKF1 and ZEITLUPE[J]. Molecules and Cells, 2019,42(10):693-701.
[8] LAZARO A, VALVERDE F, PIÑEIRO M, et al. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering[J]. The Plant Cell, 2012,24(3):982-999.
[9] ZUO Z, LIU H, LIU B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis[J]. Current Biology, 2011,21(10):841-847.
[10] KOBAYASHI Y, WEIGEL D. Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering[J]. Genes & Development, 2007,21(19):2371-2384.
[11] SASCHA L, VIRGINIE M, LE GOURRIEREC J, et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability.[J]. Development(Cambridge, England), 2006,133(16):3213-3222.
[12] TIWARI S B, SHEN Y, CHANG H C, et al. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element[J]. New Phytologist, 2010,187(1):57-66.
[13] GIORGIO P, ELISA V, ANNA Z, et al. Let it bloom: cross-talk between light and flowering signaling in Arabidopsis[J]. Physiologia Plantarum, 2020,169(3):301-311.
[14] LUCCIONI L, KRZYMUSKI M, LAMAS M S, et al. CONSTANS delays Arabidopsis flowering under short days[J]. The Plant Journal, 2019,97(5):923-932.
[15] ZHANG R, YANG C, JIANG Y, et al. A PIF7-CONSTANS-centered molecular regulatory network underlying shade-accelerated flowering[J]. Molecular Plant, 2019,12(12):1587-1597.
[16] M YANO, Y KATAYOSE, ASHIKARI M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Cell, 2000,12(12):2473-2483.
[17] ALMADA R, CABRERA N, CASARETTO J A, et al. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds[J]. Plant Cell Reports, 2009,28(8):1193-1203.
[18] CAMPOLI C, DROSSE B, SEARLE I, et al. Functional characterisation of HvCO1, the barley(Hordeum vulgare)flowering time ortholog of CONSTANS[J]. The Plant Journal, 2012,69(5):868-880.
[19] ZHANG J, ZHAO X, TIAN R, et al. Molecular cloning and functional analysis of three CONSTANS-Like genes from Chinese cymbidium[J]. Journal of Plant Growth Regulation, 2020,39:1061-1074.
[20] BORDEN K L. RING fingers and B-boxes: zinc-binding protein-protein interaction domains[J]. Katherine LB Borden, 1998,76(2/3):351-358.
[21] WENKEL S, TURCK F, SINGER K, et al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis[J]. The Plant Cell, 2006,18(11):2971-2984.
[22] GRIFFITHS S, DUNFORD R P, COUPLAND G, et al. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis[J]. Plant Physiology, 2003,131(4):1855-1867.
[23] CHOU M, SHIH M, CHAN M, et al. Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla[J]. Planta, 2013,237(6):1425-1441.
[24] STEINBACH Y. The Arabidopsis thaliana CONSTANS-LIKE 4(COL4)-a modulator of flowering time[J]. Frontiers in Plant Science, 2019,10:651-658.
[25] MUNTHA S T, ZHANG L, ZHOU Y, et al. Phytochrome a signal transduction 1 and CONSTANS-LIKE 13 coordinately orchestrate shoot branching and flowering in leafy Brassica juncea[J]. Plant Biotechnology Journal, 2019,17(7):1333-1343.
[26] ZHANG Z, JI R, LI H, et al. CONSTANS-LIKE 7(COL7)is involved in phytochrome B(phyB)-mediated light-quality regulation of auxin homeostasis[J]. Molecular Plant, 2014,7(9):1429-1440.
[27] OHMIYA A, ODA-YAMAMIZO C, KISHIMOTO S, et al. Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas[J]. Plant Science An International Journal of Experimental Plant Biology, 2019:90-96.
[28] SNG N J, BRYAN K, FERL R J, et al. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation[J]. Aob Plants, 2018,11(1):75-83.
[29] VALVERDE F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering[J]. Journal of Experimental Botany, 2011,62(8):2453-2463.
[30] HUANG T, BÖHLENIUS H, ERIKSSON S, et al. The mRNA of the Arabidopsis Gene FT moves from leaf to shoot apex and induces flowering[J]. Science, 2005,309:1694-1696.
[31] ABE M, KOBAYASHI Y, YAMAMOTO S, et al. FD, a bZIP Protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005,309:1052-1056.
[32] TAOKA K, OHKI I, TSUJI H, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature: International Weekly Journal of Science, 2011,476:332-335.
[33] HARTMANN U, HÖHMANN S, NETTESHEIM K, et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis[J]. The Plant Journal, 2000,21(4):351-360.
[34] KUMAR S V, LUCYSHYN D, JAEGER K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature: International Weekly Journal of Science, 2012,484:242-245.
[35] TOSHIHISA K, SHINOBU T, KENJI N, et al. Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes.[J]. Plant & Cell Physiology, 2003,44(6):555-564.
[36] S D MICHAELS, AMASINO R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. The Plant Cell, 1999,11(5):949-956.
[37] KARDAILSKY I, SHUKLA V K, AHN J H, et al. Activation tagging of the floral inducer FT[J]. Science, 1999,286:1962-1965.
[38] BRADLEY D, RATCLIFFE O, VINCENT C, et al. Inflorescence commitment and architecture in arabidopsis[J]. Science, 1997,275:80-83.
[39] ANDRÉS F, KINOSHITA A, KALLURI N, et al. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana[J]. BMC Plant Biology, 2020,20(1):1-14.
[40] ENDO T, SHIMADA T, FUJII H, et al. Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange(Poncirus trifoliata L. Raf.)[J]. Transgenic Research, 2005,14(5):703-712.
[41] SHOKO K, YUJI T, YASUSHI K, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions[J]. Plant Cell Physiol, 2002,43(10):1096-1105.
[42] HECHT V. Conservation of arabidopsis flowering genes in model legumes[J]. Plant Physiology, 2005,137(4):1420-1434.
[43] LIN T, CHEN Q, WICHENHEISER R Z, et al. Constitutive expression of a blueberry FLOWERING LOCUS T gene hastens petunia plant flowering[J]. Scientia Horticulturae, 2019,253:376-381.
[44] HAYAMA R, AGASHE B, LULEY E, et al. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in pharbitis[J]. The Plant Cell, 2007,19(10):2988-3000.
[45] WANG L, YAN J, ZHOU X, et al. GbFT, a FLOWERING LOCUS T homolog from Ginkgo biloba, promotes flowering in transgenic Arabidopsis[J]. Scientia Horticulturae, 2019,247:205-215.
[46] SHEN G, LIU N, ZHANG J, et al. Cuscuta australis(dodder)parasite eavesdrops on the host plants’ FT signals to flower[J]. Proceedings of the National Academy of Sciences, 2020,117(37):23125-23130.
[47] SHENHAO W, HONGBO L, YANGYANG L, et al. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes.[J]. Plant Physiology, 2020,182(2):908-918.
[48] PIN P A, BENLLOCH R, BONNET D, et al. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet[J]. Science, 2010,330:1397-1400.
[49] HSU C, ADAMS J P, KIM H, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(26):10756-10761.
[50] AYAKO Y, YASUSHI K, KOJI G, et al. TWIN SISTER OF FT(TSF)acts as a floral pathway integrator redundantly with FT[J]. Plant & Cell Physiology, 2005,46(8):1175-1189.
[51] YOO S J, CHUNG K S, JUNG S H, et al. BROTHER OF FT AND TFL1(BFT)has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis[J]. The Plant Journal, 2010,63(2):241-253.
[52] HUANG N C, JANE W N, CHEN J, et al. Arabidopsis thaliana CENTRORADIALIS homologue(ATC)acts systemically to inhibit floral initiation in arabidopsis[J]. The Plant Journal, 2012,72(2):175-184.
[53] YEON Y S, IGOR K, SEOB L J, et al. Acceleration of flowering by overexpression of MFT(MOTHER OF FT AND TFL1).[J]. Molecules and Cells, 2004,17(1):95-101.
[54] HEDMAN H, KÄLLMAN T, LAGERCRANTZ U. Early evolution of the MFT-like gene family in plants[J]. Plant Molecular Biology, 2009,70(4):359-369.
[55] KARLGREN A, GYLLENSTRAND N, KÄLLMAN T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution[J]. Plant Physiology, 2011,156(4):1967-1977.
[56] WICKLAND D P, HANZAWA Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms[J]. Molecular Plant, 2015,8(7):983-997.
[57] NAVARRO C, ABELENDA J A, CRUZ-OR E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T[J]. Nature: International Weekly Journal of Science, 2011,478:119-122.
[58] KINOSHITA T, ONO N, HAYASHI Y, et al. FLOWERING LOCUS T regulates stomatal opening[J]. Current Biology, 2011,21(14):1232-1238.
[59] KAZUHISA H, AYAKO Y, MITSUTOMO A, et al. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana[J]. Plant & Cell Physiology, 2013,54(3):352-368.
[60] RYOMA T, HAIYANG N, KOHEI H, et al. Functional divergence between soybean FLOWERING LOCUS T orthologues FT2a and FT5a in post-flowering stem growth.[J]. Journal of Experimental Botany, 2019,70(15):3941-3953.
[61] AGUILAR-MARTÍNEZ J A, POZA-CARRIN C, CUBAS P. Arabidopsis BRANCHED1 acts as in integrator of branching signals within axillary buds[J]. The Plant Cell, 2007,19(2):458-472.
[62] NIWA M, DAIMON Y, KUROTANI K, et al. BRANCHED1 Interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis[J]. The Plant Cell, 2013,25(4):1228-1242.
[63] ABELENDA J A, BERGONZI S, OORTWIJN M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato[J]. Current Biology, 2019,29(7):1178-1186.
[64] LEE R, BALDWIN S, KENEL F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering[J]. Nature Communications, 2013,4(1):1-9.

备注/Memo

备注/Memo:
收稿日期:2020-05-14 修回日期:2020-10-16
基金项目:国家自然科学基金项目(31771855).
作者简介:罗碧珍(1995-),女.研究方向:细胞生物学.Email:bzluo@foxmail.com.通信作者罗永海(1977-),男,副教授,博士.研究方向:甘薯重要农艺性状的分子调控机制.Email:yonghailuo@foxmail.com.
更新日期/Last Update: 2021-02-15