[1]石傲傲,郑 毅,张 坤,等.香根草对扑草净胁迫的响应和去除效果[J].福建农林大学学报(自然科学版),2021,50(02):170-177.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.004]
 SHI Aoao,ZHENG Yi,ZHANG Kun,et al.Stress response and removal efficiency of Vetiveria zizanioides for prometryn[J].,2021,50(02):170-177.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.004]
点击复制

香根草对扑草净胁迫的响应和去除效果()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年02期
页码:
170-177
栏目:
植物保护
出版日期:
2021-02-15

文章信息/Info

Title:
Stress response and removal efficiency of Vetiveria zizanioides for prometryn
文章编号:
1671-5470(2021)02-0170-08
作者:
石傲傲1 郑 毅12 张 坤3 角慈梅1 李鑫圆4 孙仕仙1
1.西南林业大学国家高原湿地研究中心/湿地学院,云南 昆明 650224; 2.云南开放大学校长办公室, 云南 昆明 650223; 3.云南农业大学植物保护学院,云南 昆明 650221; 4.西南林业大学生态与环境学院,云南 昆明 650224
Author(s):
SHI Aoao1 ZHENG Yi12 ZHANG Kun3 JIAO Cimei1 LI Xinyuan4 SUN Shixian1
1.National Plateau Wetland Research Center/College of Wetland, Southwest Forestry University, Kunming, Yunnan 650224, China; 2.Office of President, Yunnan Open University, Kunming, Yunnan 650223, China; 3.College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan 650221, China; 4.School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China
关键词:
扑草净 香根草 光合荧光 污染胁迫 去除效果 植物修复
Keywords:
prometryn Vetiveria zizanioides photosynthetic fluorescence pollution stress removal efficiency phytoremediation
分类号:
X173
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.02.004
文献标志码:
A
摘要:
以香根草为供试材料,采用温室水培的方法,研究了香根草对1和10 mg·L-1扑草净胁迫的光合生理响应和去除效果.结果表明:1和10 mg·L-1扑草净处理后,香根草总鲜重和鲜重增长率较CK(未添加扑草净)显著下降; 香根草叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、PSⅡ最大光化学效率(Fv/Fm)、潜在光化学效率(Fv/Fo)和实际光化学效率(ФPSⅡ)、电子传递速率(ETR)、光化学猝灭系数(qP)均随扑草净处理天数的延长呈先下降后回升趋势,胁迫效应随扑草净浓度增大而增强; 胞间CO2浓度(Ci)随扑草净浓度的增大而增加,随处理天数的延长先升高后降低; 但扑草净未对香根草非光化学猝灭系数(NPQ)产生显著影响.1 mg·L-1扑草净处理35 d后,香根草光合参数和叶绿素荧光参数均能恢复到正常水平; 10 mg·L-1扑草净处理则呈缓慢恢复趋势.种植香根草的营养液中1和10 mg·L-1扑草净的去除率较未种植香根草处理分别提高了44.68%和53.76%.
Abstract:
To study the efficacy of Vetiveria zizanioides as a phytoremediation material, the physiological and photosynthetic responses of V.zizanioides and its removal efficiency for different levels of prometryn(1, 10 mg·L-1)were studied via hydroponics method. The results showed that in response to 1 and 10 mg·L-1 prometryn total fresh weight and fresh weight growth rate of V.zizanioides were decreased significantly compared with the control. Chlorophyll content, net photosynthetic rate(Pn), stomatal conductance(Gs), transpiration rate(Tr), PSⅡ maximal photochemical efficiency(Fv/Fm), potential photochemical efficiency(Fv/Fo)and actual photochemical efficiency(ФPSⅡ), electron transport rate(ETR)and photochemical quenching coefficient(qP)firstly declined and then increased as the trial proceeded; and stress was intensified with the increase of prometryn concentration. Intercellular CO2 concentration(Ci)rose with the increase of prometryn concentration, while it firstly increased and then decreased as the treatment went on. Prometryn had no significant effect on the non-photochemical quenching coefficient(NPQ)of V.zizanioides. After being treated with 1 mg·L-1 prometryn for 35 d, the photosynthetic and chlorophyll fluorescence parameters of V.zizanioides returned to the normal level; while those treated with 10 mg·L-1 prometryn showed a slow recovery trend. Moreover, removal rates of 1 and 10 mg·L-1 prometryn in nutrient solutions planted with V.zizanioides were enhanced by 44.68% and 53.76%, respectively.

参考文献/References:

[1] 张骞月,吴伟.扑草净在养殖水体中的生态毒理效应及其微生物降解的研究进展[J].生物灾害科学,2014,37(1):64-69.
[2] 陈溪,刘梦遥,曲世超,等.海产品、底泥、海水中扑草净药物残留量的液相色谱-串联质谱检测[J].化学通报,2013,76(2):183-186.
[3] 李庆鹏,秦达,崔文慧,等.我国水产品中农药扑草净残留超标的警示分析[J].食品安全质量检测学报,2014,5(1):108-112.
[4] 桂英爱,葛祥武,孙程鹏,等.扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J].大连海洋大学学报,2019,34(6):846-852.
[5] D-IKIC D. Encyclopedia of toxicology[M]. 3rd ed. Oxford: Academic Press, 2014:1077-1081.
[6] WANG Y P, ZHANG G W, WANG L H. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies[J]. Pesticide Biochemistry & Physiology, 2014,108:66-73.
[7] SERGIO B, ENRICO B, ASSIMO M, et al. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides[J]. Journal of Molecular Structure, 2013,1040:139-148.
[8] DAVID C, LUM A F. Phytoremediation: a green technology with weeds as actors in heavy metal contaminated soil[J]. Current Environmental Engineering, 2017,4(1):5-9.
[9] 夏汉平,刘世忠.香根草优良生态型筛选研究[J].草业学报,2003,12(2):97-105.
[10] RAMAN J K, GNANSOUNOU E. A review on bioremediation potential of vetiver grass[M]. Singapore: Springer, 2018:127-140.
[11] YE M, SUN M, LIU Z, et al. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site[J]. Journal of Environmental Management, 2014,141:161-168.
[12] MATHEW M, ROSARY S C, SEBASTIAN M, et al. Effectiveness of vetiver system for the treatment of wastewater from an institutional kitchen[J]. Procedia Technology, 2016,24:203-209.
[13] PANJA S, SARKAR D, DATTA R. Vetiver grass(Chrysopogon zizanioides)is capable of removing insensitive high explosives from munition industry wastewater[J]. Chemosphere, 2018,209:920-927.
[14] SUN S X, LI Y M, ZHENG Y, et al. Uptake of 2, 4-bis(isopropylamino)-6-methylthio-s-triazine by vetiver grass(Chrysopogon zizanioides L.)from hydroponic media[J]. Bulletin of Environmental Contamination and Toxicology, 2016,96(4):550-555.
[15] 王学奎,黄见良.植物生理生化实验原理和技术[M].3版.北京:高等教育出版社,2015:131-133.
[16] 温银元,郭平毅,尹美强,等.扑草净对远志幼苗根系活力及氧化胁迫的影响[J].生态学报,2012,32(8):2506-2514.
[17] RADHAKRISHNAN R, ALQARAWI A A, ABDALLAH E F. Bioherbicides: current knowledge on weed control mechanism[J]. Ecotoxicology and Environmental Safety, 2018,158:131-138.
[18] 刘建霞,刘建,王润梅,等.扑草净处理对黄芪幼苗生理生化特性的影响[J].中药材,2019,42(4):738-741.
[19] 简敏菲,吴希恩,张乖乖,等.模拟河岸带夏季水位变化对水蓼生长及其光合荧光特性的影响[J].植物生理学报,2020,56(1):83-92.
[20] 张朝贤,倪汉文,魏守辉,等.杂草抗药性研究进展[J].中国农业科学,2009,42(4):1274-1289.
[21] BURKE J J, WILSON R F, SWAFFORD J R. Characterization of chloroplast sisolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L.[J]. Plant Physiology, 1982,70(1):24-29.
[22] 朱慧,马瑞君.入侵植物马缨丹(Lantana camara)及其伴生种的光合特性[J].生态学报,2009,29(5):2701-2709.
[23] 张仁和,郑友军,马国胜,等.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J].生态学报,2011,31(5):1303-1311.
[24] 李翠,温海峰,郑瑞伦,等.阿特拉津胁迫对菖蒲的生理毒性效应[J].农业环境科学学报,2016,35(10):1895-1902.
[25] 原佳乐,马超,冯雅岚,等.不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应[J].植物生理学报,2018,54(6):1119-1129.
[26] VAN KOOTEN O, SNEL J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990,25(3):147-150.
[27] DEMMING-ADAMS B, ADAMS W W, HEBER U, et al. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts[J]. Plant Physiology, 1990,92(2):293-301.
[28] 孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(3):457-464.
[29] 申须仁,董名扬,王朝勇,等.高锰胁迫对香根草矿质元素吸收及光合系统的影响[J].农业环境科学学报,2019,38(10):2297-2305.
[30] NI J, SUN S X, ZHENG Y, et al. Removal of prometryn from hydroponic media using marsh pennywort(Hydrocotyle vulgaris L.)[J]. International Journal of Phytoremediation, 2018,20(9):909-913.
[31] 石雷,杨璇.人工湿地植物量及其对净化效果影响的研究[J].生态环境学报,2010,19(1):28-33.
[32] GIKAS G D, VRYZAS Z, TSIHRINTZIS V A. S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2018,339(1):108-116.

备注/Memo

备注/Memo:
收稿日期:2020-06-05 修回日期:2020-08-07
基金项目:国家自然科学基金项目(41867027、41563014、31460551); 云南省“万人计划”青年拔尖人才专项(80201442); 云南省教育厅科研项目(2018Y117); 云南省哲学社会科学教育科学规划项目(AE18038).
作者简介:石傲傲(1995-),女.研究方向:湿地环境污染修复.Email:996374937@qq.com.通信作者孙仕仙(1979-),女,教授,博士生导师.研究方向:有机污染物植物修复技术及机理.Email:shine1009@sina.com.
更新日期/Last Update: 2021-02-15