参考文献/References:
[1] 张骞月,吴伟.扑草净在养殖水体中的生态毒理效应及其微生物降解的研究进展[J].生物灾害科学,2014,37(1):64-69.
[2] 陈溪,刘梦遥,曲世超,等.海产品、底泥、海水中扑草净药物残留量的液相色谱-串联质谱检测[J].化学通报,2013,76(2):183-186.
[3] 李庆鹏,秦达,崔文慧,等.我国水产品中农药扑草净残留超标的警示分析[J].食品安全质量检测学报,2014,5(1):108-112.
[4] 桂英爱,葛祥武,孙程鹏,等.扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J].大连海洋大学学报,2019,34(6):846-852.
[5] D-IKIC’ D. Encyclopedia of toxicology[M]. 3rd ed. Oxford: Academic Press, 2014:1077-1081.
[6] WANG Y P, ZHANG G W, WANG L H. Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies[J]. Pesticide Biochemistry & Physiology, 2014,108:66-73.
[7] SERGIO B, ENRICO B, ASSIMO M, et al. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides[J]. Journal of Molecular Structure, 2013,1040:139-148.
[8] DAVID C, LUM A F. Phytoremediation: a green technology with weeds as actors in heavy metal contaminated soil[J]. Current Environmental Engineering, 2017,4(1):5-9.
[9] 夏汉平,刘世忠.香根草优良生态型筛选研究[J].草业学报,2003,12(2):97-105.
[10] RAMAN J K, GNANSOUNOU E. A review on bioremediation potential of vetiver grass[M]. Singapore: Springer, 2018:127-140.
[11] YE M, SUN M, LIU Z, et al. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site[J]. Journal of Environmental Management, 2014,141:161-168.
[12] MATHEW M, ROSARY S C, SEBASTIAN M, et al. Effectiveness of vetiver system for the treatment of wastewater from an institutional kitchen[J]. Procedia Technology, 2016,24:203-209.
[13] PANJA S, SARKAR D, DATTA R. Vetiver grass(Chrysopogon zizanioides)is capable of removing insensitive high explosives from munition industry wastewater[J]. Chemosphere, 2018,209:920-927.
[14] SUN S X, LI Y M, ZHENG Y, et al. Uptake of 2, 4-bis(isopropylamino)-6-methylthio-s-triazine by vetiver grass(Chrysopogon zizanioides L.)from hydroponic media[J]. Bulletin of Environmental Contamination and Toxicology, 2016,96(4):550-555.
[15] 王学奎,黄见良.植物生理生化实验原理和技术[M].3版.北京:高等教育出版社,2015:131-133.
[16] 温银元,郭平毅,尹美强,等.扑草净对远志幼苗根系活力及氧化胁迫的影响[J].生态学报,2012,32(8):2506-2514.
[17] RADHAKRISHNAN R, ALQARAWI A A, ABDALLAH E F. Bioherbicides: current knowledge on weed control mechanism[J]. Ecotoxicology and Environmental Safety, 2018,158:131-138.
[18] 刘建霞,刘建,王润梅,等.扑草净处理对黄芪幼苗生理生化特性的影响[J].中药材,2019,42(4):738-741.
[19] 简敏菲,吴希恩,张乖乖,等.模拟河岸带夏季水位变化对水蓼生长及其光合荧光特性的影响[J].植物生理学报,2020,56(1):83-92.
[20] 张朝贤,倪汉文,魏守辉,等.杂草抗药性研究进展[J].中国农业科学,2009,42(4):1274-1289.
[21] BURKE J J, WILSON R F, SWAFFORD J R. Characterization of chloroplast sisolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L.[J]. Plant Physiology, 1982,70(1):24-29.
[22] 朱慧,马瑞君.入侵植物马缨丹(Lantana camara)及其伴生种的光合特性[J].生态学报,2009,29(5):2701-2709.
[23] 张仁和,郑友军,马国胜,等.干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J].生态学报,2011,31(5):1303-1311.
[24] 李翠,温海峰,郑瑞伦,等.阿特拉津胁迫对菖蒲的生理毒性效应[J].农业环境科学学报,2016,35(10):1895-1902.
[25] 原佳乐,马超,冯雅岚,等.不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应[J].植物生理学报,2018,54(6):1119-1129.
[26] VAN KOOTEN O, SNEL J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990,25(3):147-150.
[27] DEMMING-ADAMS B, ADAMS W W, HEBER U, et al. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts[J]. Plant Physiology, 1990,92(2):293-301.
[28] 孙德智,韩晓日,彭靖,等.外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J].应用与环境生物学报,2018,24(3):457-464.
[29] 申须仁,董名扬,王朝勇,等.高锰胁迫对香根草矿质元素吸收及光合系统的影响[J].农业环境科学学报,2019,38(10):2297-2305.
[30] NI J, SUN S X, ZHENG Y, et al. Removal of prometryn from hydroponic media using marsh pennywort(Hydrocotyle vulgaris L.)[J]. International Journal of Phytoremediation, 2018,20(9):909-913.
[31] 石雷,杨璇.人工湿地植物量及其对净化效果影响的研究[J].生态环境学报,2010,19(1):28-33.
[32] GIKAS G D, VRYZAS Z, TSIHRINTZIS V A. S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2018,339(1):108-116.