[1]安飞飞,崔梦佳,杨 龙,等.木薯MeGalt1基因克隆、在采后生理腐烂过程中表达分析及载体构建[J].福建农林大学学报(自然科学版),2021,50(02):244-249.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.014]
 AN Feifei,CUI Mengjia,YANG Long,et al.Cloning and expression of MeGalt1 and vector construction in cassava during physiological deterioration after harvesting[J].,2021,50(02):244-249.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.014]
点击复制

木薯MeGalt1基因克隆、在采后生理腐烂过程中表达分析及载体构建()
分享到:

福建农林大学学报(自然科学版)[ISSN:1671-5470/CN:35-1255/S]

卷:
50卷
期数:
2021年02期
页码:
244-249
栏目:
生命科学
出版日期:
2021-02-15

文章信息/Info

Title:
Cloning and expression of MeGalt1 and vector construction in cassava during physiological deterioration after harvesting
文章编号:
1671-5470(2021)02-0244-06
作者:
安飞飞1 崔梦佳2 杨 龙3 陈松笔1
1.中国热带农业科学院热带作物品种资源研究所/农业部木薯种质资源保护与利用重点实验室, 海南 海口 571101; 2.南京农业大学农学院,江苏 南京 210000; 3.贵州省亚热带作物研究所,贵州 兴义 562400
Author(s):
AN Feifei1 CUI Mengjia2 YANG Long3 CHEN Songbi1
1.Tropical Crops Genetic Resources Institute/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; 2.College of Agriculture, Nanjing Agricultural University, Nanjing, Jaingsu 210000, China; 3.Subtropical Crops Research Institute of Guizhou Province, Xingyi, Guizhou 562400, China
关键词:
木薯 采后生理腐烂 MeGalt1 克隆 表达分析
Keywords:
Manihot esculenta post-harvest physiological deterioration MeGalt1 cloning expression analysis
分类号:
S533
DOI:
10.13323/j.cnki.j.fafu(nat.sci.).2021.02.014
文献标志码:
A
摘要:
β-1,3-半乳糖基转移酶(Galt)是形成糖蛋白中Lewis a结构的关键酶,从木薯块根中克隆MeGalt1基因,分析其在木薯块根不同采后腐烂程度中的表达,旨在揭示MeGalt1基因在木薯块根采后生理腐烂中的作用.进化分析表明,木薯中存在3个MeGalt1基因并成功克隆MeGalt1-1、MeGalt1-2和MeGalt1-3,分别具有1 890、1 893和1 902 bp的CDS区,编码629、630和633个氨基酸.Western Blot显示木薯块根采后生理腐烂过程受到蛋白质N-糖基化修饰调控.定量分析表明MeGalt1-1和MeGalt1-3随着腐烂程度加深其表达量也随之升高.在此基础上,成功构建MeGalt1基因的植物过表达载体pCAMBIA1300r-MeGalt1-1和pCAMBIA1300r-MeGalt1-3,为进一步解析MeGalt1在木薯块根采后生理腐烂中的分子作用机制提供材料.
Abstract:
β-1, 3-galactosyltransferase(Galt)is a key enzyme in the formation of Lewis a structure in glycoproteins. To reveal the role of MeGalt1 gene in the post-harvest physiological deterioration(PPD)of Manihot esculenta Crantz, the MeGalt1 gene was cloned from cassava tuberous roots. Then the expression of the MeGalt1 gene was characterized under different degrees of PPD. Evolution analysis showed that 3 MeGalt1 genes were existed in cassava, named MeGalt1-1, MeGalt1-2 and MeGalt1-3, and they were further successfully cloned from cassava tuberous roots. The sizes of the coding sequence regions of the 3 genes were 1 890, 1 893 and 1 902 bp, encoding 629, 630 and 633 amino acids, respectively. Western blotting showed that PPD was regulated by N-glycosylation. RT-PCR revealed that the expressions of MeGalt1-1 and MeGalt1-3 were increased with the severity of PPD. On this basis, the plant overexpression vectors pCAMBIA1300r-MeGalt1-1 and pCAMBIA1300r-MeGalt1-3 were successfully constructed, which provides materials for the further analysis of MeGalt1 gene in the PPD of cassava tuberous roots.

参考文献/References:

[1] KUMBA K. Genetic characterization of exotic and landraces of cassava in Ghana[D]. Kwamenkrumah: University of Science and Technology, 2012.
[2] GU B, YAO Q, LI K, et al. Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors[J]. Starch/Starke, 2013,65:253-263.
[3] REILLY K, BERNAL D, CORTES D F, et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology, 2007,64:187-203.
[4] REILLY K, GOMEZ-V’ASQUEZ R, BUSHMANN H, et al. Oxidative stress responses during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology, 2004,53:669-685.
[5] UARROTA V G, MARASCHIN M. Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration[J]. BMC Research Notes, 2015,8:648.
[6] ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production[J]. Plant Physiology, 2012,159(4):1396-1407.
[7] 简纯平.采后木薯块根贮存能力及蛋白质组学分析[D].海口:海南大学,2013.
[8] 张鹏,安冬,马秋香,等.木薯分子育种中若干基本科学问题的思考与研究进展[J].中国科学:生命科学,2013,43(12):1082-1089.
[9] OWITI J, GROSSMANN J, GEHRIG P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with postharvest physiological deterioration[J]. Plant Journal, 2011,67:145-156.
[10] 秦于玲.木薯块根采后生理腐烂的蛋白质组和转录组分析[D].广州:华南师范大学,2017.
[11] QIN Y, DJABOU A S M, AN F, et al. Proteomic analysis of injured storage roots in cassava(Manihot esculenta Crantz)under postharvest physiological deterioration[J]. PLoS ONE, 2017,12(3):e0174238.
[12] DJABOU A S M, CARVALHO L J C B, LI Q X, et al. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death[J]. Acta Physiologiae Plantarum, 2017,39:91.
[13] VANDERSCHUREN H, NYABOGA E, POON J S, et al. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration[J]. Plant Cell, 2014,26(5):1913-1924.
[14] HU W, KONG H, GUO Y, et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava[J]. Frontiers in Plant Science, 2016,7:736.
[15] AN F, BAKERM R, QIN Y, et al. Relevance of Class Ⅰ α-Mannosidases to cassava postharvest physiological deterioration[J]. ACS Omega, 2019,4:8739-8746.
[16] DJABOU A S M, QIN Y, THADDEE B, et al. Effects of calcium and magnesium fertilization on antioxidant activities during cassava postharvest physiological deterioration[J]. Crop Science, 2018,58:1-8.
[17] WIEDERSCHAIN G Y. Glycobiology: progress, problems, and perspectives[J]. Biochemistry, 2013,78(7):679-696.
[18] STRASSER R, BONDILI J S, VAVRA U, et al. A unique β1, 3-Galactosyltransferase Is Indispensable for the Biosynthesis of N-Glycans Containing Lewis a Structures in Arabidopsis thaliana[J]. The Plant Cell, 2007,19:2278-2292.
[19] CARVALHO L J C B, LIPPOLIS J, CHEN S, et al. Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava(Manihot esculenta Crantz)storage root[J]. The Open Biochemistry Journal, 2012,6:116-130.
[20] ZHANG L, LIANG G, GAO X, et al. Characterization and functional analysis of β-1, 3-galactosyltransferase involved in Cry1Ac resistance from Helicoverpa armigera(Hübner)[J]. Journal of Integrative Agriculture, 2015,14(2):337-346.
[21] ZHOU D, BERGER E, HENNET T. Molecular cloning of a human UDP-galactose: GlcNAcbeta1, 3 GalNAc beta 1, 3-galactosyl transferase gene encoding an O-linked core 3-elongation enzyme[J]. European Journal of Biochemistry, 1999,263(2):571-576.
[22] GHOSH S, MELI V S, KUMAR A, et al. The N-glycan processing enzymes α-mannosidase and β-D-N-acetyll hexosaminidase are involved in ripening-associated softening in the non-climacteric fruit of capsicum[J]. Journal of Experimental Botany, 2011,62(2):571-582.
[23] MELI V S, GHOSH S, PRABHA T, et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(6):2413-2418.
[24] LIEBMINGER E, HUTTNER S, VAVRA U, et al. Class I a-Mannosidases are required for N-Glycan processing and root development in Arabidopsis thaliana[J]. The Plant Cell, 2011,21:3850-3867.
[25] XU J, DUAN X, YANG J, et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology, 2013,161(3):1517-1528.
[26] ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production[J]. Plant Physiology, 2012,159(4):1396-1407.
[27] BEYENE G, SOLOMON F R, CHAUHAN R D, et al. Provitamin a biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch[J]. Plant Biotechnology Journal, 2017,16(6):1186-1200.

相似文献/References:

[1]薛晶晶,陈松笔.木薯环指蛋白基因MeRFP8克隆及表达[J].福建农林大学学报(自然科学版),2017,46(01):73.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.012]
 XUE Jingjing,CHEN Songbi.Cloning and expression of a MeRFP8 gene in cassava(Manihot esculenta Crantz)[J].,2017,46(02):73.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.012]
[2]罗秀芹,杨 龙,肖鑫辉,等.木薯块根类胡萝卜素积累与主要基因表达谱分析[J].福建农林大学学报(自然科学版),2018,47(02):138.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.002]
 LUO Xiuqin,Yang Long,XIAO Xinhui,et al.Analysis of carotenoids accumulation and main genes expression profile in cassava storage root[J].,2018,47(02):138.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.002]
[3]罗秀芹,欧文军,李开绵,等.抗寒蛋白硬脂酰-ACP脱饱和酶的结构与功能预测[J].福建农林大学学报(自然科学版),2014,43(05):484.
 LUO Xiu-qin,OU Wen-jun,LI Kai-mian,et al.The structure and function prediction of the cold resistance enzyme stearoyl -ACP desaturation[J].,2014,43(02):484.

备注/Memo

备注/Memo:
收稿日期:2020-05-27 修回日期:2020-09-16
基金项目:国家重点研发计划项目(2019YFD1000500); 中央级公益性科研院所基本科研业务费专项(1630032019009); 海南省自然科学基金项目(320MS100); 贵州省科技计划项目(黔科合支撑[2019]2358号).
作者简介:安飞飞(1983-),女.研究方向:木薯蛋白质组学.Email:aff85110@163.com.通信作者陈松笔(1966-),男,研究员,博士生导师.研究方向:木薯遗传育种; Email:songbichen@catas.cn.
更新日期/Last Update: 2021-02-15