参考文献/References:
[1] KUMBA K. Genetic characterization of exotic and landraces of cassava in Ghana[D]. Kwamenkrumah: University of Science and Technology, 2012.
[2] GU B, YAO Q, LI K, et al. Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors[J]. Starch/Starke, 2013,65:253-263.
[3] REILLY K, BERNAL D, CORTES D F, et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology, 2007,64:187-203.
[4] REILLY K, GOMEZ-V’ASQUEZ R, BUSHMANN H, et al. Oxidative stress responses during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology, 2004,53:669-685.
[5] UARROTA V G, MARASCHIN M. Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration[J]. BMC Research Notes, 2015,8:648.
[6] ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production[J]. Plant Physiology, 2012,159(4):1396-1407.
[7] 简纯平.采后木薯块根贮存能力及蛋白质组学分析[D].海口:海南大学,2013.
[8] 张鹏,安冬,马秋香,等.木薯分子育种中若干基本科学问题的思考与研究进展[J].中国科学:生命科学,2013,43(12):1082-1089.
[9] OWITI J, GROSSMANN J, GEHRIG P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with postharvest physiological deterioration[J]. Plant Journal, 2011,67:145-156.
[10] 秦于玲.木薯块根采后生理腐烂的蛋白质组和转录组分析[D].广州:华南师范大学,2017.
[11] QIN Y, DJABOU A S M, AN F, et al. Proteomic analysis of injured storage roots in cassava(Manihot esculenta Crantz)under postharvest physiological deterioration[J]. PLoS ONE, 2017,12(3):e0174238.
[12] DJABOU A S M, CARVALHO L J C B, LI Q X, et al. Cassava postharvest physiological deterioration: a complex phenomenon involving calcium signaling, reactive oxygen species and programmed cell death[J]. Acta Physiologiae Plantarum, 2017,39:91.
[13] VANDERSCHUREN H, NYABOGA E, POON J S, et al. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration[J]. Plant Cell, 2014,26(5):1913-1924.
[14] HU W, KONG H, GUO Y, et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava[J]. Frontiers in Plant Science, 2016,7:736.
[15] AN F, BAKERM R, QIN Y, et al. Relevance of Class Ⅰ α-Mannosidases to cassava postharvest physiological deterioration[J]. ACS Omega, 2019,4:8739-8746.
[16] DJABOU A S M, QIN Y, THADDEE B, et al. Effects of calcium and magnesium fertilization on antioxidant activities during cassava postharvest physiological deterioration[J]. Crop Science, 2018,58:1-8.
[17] WIEDERSCHAIN G Y. Glycobiology: progress, problems, and perspectives[J]. Biochemistry, 2013,78(7):679-696.
[18] STRASSER R, BONDILI J S, VAVRA U, et al. A unique β1, 3-Galactosyltransferase Is Indispensable for the Biosynthesis of N-Glycans Containing Lewis a Structures in Arabidopsis thaliana[J]. The Plant Cell, 2007,19:2278-2292.
[19] CARVALHO L J C B, LIPPOLIS J, CHEN S, et al. Characterization of carotenoid-protein complexes and gene expression analysis associated with carotenoid sequestration in pigmented cassava(Manihot esculenta Crantz)storage root[J]. The Open Biochemistry Journal, 2012,6:116-130.
[20] ZHANG L, LIANG G, GAO X, et al. Characterization and functional analysis of β-1, 3-galactosyltransferase involved in Cry1Ac resistance from Helicoverpa armigera(Hübner)[J]. Journal of Integrative Agriculture, 2015,14(2):337-346.
[21] ZHOU D, BERGER E, HENNET T. Molecular cloning of a human UDP-galactose: GlcNAcbeta1, 3 GalNAc beta 1, 3-galactosyl transferase gene encoding an O-linked core 3-elongation enzyme[J]. European Journal of Biochemistry, 1999,263(2):571-576.
[22] GHOSH S, MELI V S, KUMAR A, et al. The N-glycan processing enzymes α-mannosidase and β-D-N-acetyll hexosaminidase are involved in ripening-associated softening in the non-climacteric fruit of capsicum[J]. Journal of Experimental Botany, 2011,62(2):571-582.
[23] MELI V S, GHOSH S, PRABHA T, et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(6):2413-2418.
[24] LIEBMINGER E, HUTTNER S, VAVRA U, et al. Class I a-Mannosidases are required for N-Glycan processing and root development in Arabidopsis thaliana[J]. The Plant Cell, 2011,21:3850-3867.
[25] XU J, DUAN X, YANG J, et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology, 2013,161(3):1517-1528.
[26] ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al. Extending cassava root shelf life via reduction of reactive oxygen species production[J]. Plant Physiology, 2012,159(4):1396-1407.
[27] BEYENE G, SOLOMON F R, CHAUHAN R D, et al. Provitamin a biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch[J]. Plant Biotechnology Journal, 2017,16(6):1186-1200.
相似文献/References:
[1]薛晶晶,陈松笔.木薯环指蛋白基因MeRFP8克隆及表达[J].福建农林大学学报(自然科学版),2017,46(01):73.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.012]
XUE Jingjing,CHEN Songbi.Cloning and expression of a MeRFP8 gene in cassava(Manihot esculenta Crantz)[J].,2017,46(02):73.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.012]
[2]罗秀芹,杨 龙,肖鑫辉,等.木薯块根类胡萝卜素积累与主要基因表达谱分析[J].福建农林大学学报(自然科学版),2018,47(02):138.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.002]
LUO Xiuqin,Yang Long,XIAO Xinhui,et al.Analysis of carotenoids accumulation and main genes expression profile in cassava storage root[J].,2018,47(02):138.[doi:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.002]
[3]罗秀芹,欧文军,李开绵,等.抗寒蛋白硬脂酰-ACP脱饱和酶的结构与功能预测[J].福建农林大学学报(自然科学版),2014,43(05):484.
LUO Xiu-qin,OU Wen-jun,LI Kai-mian,et al.The structure and function prediction of the cold resistance enzyme stearoyl -ACP desaturation[J].,2014,43(02):484.